Question
Mathematics Question on Differential equations
For the differential equations, find the particular solution satisfying the given condition:x2dy+(xy+y2)dx=0;y=1 when x=1
x2dy+(xy+y2)dx=0
⇒x2dy=−(xy+y2)dx
⇒dxdy=x2−(xy+y2)...(1)
Let F(x,y)=x2−(xy+y2).
∴F(λx,λy)=(λx)2[λx.λy+(λy)2]=x−(xy+y2)=λ°.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
y=vx
⇒dxd(y)=dxd(vx)
⇒dxdy=v+xdxdv
Substituting the values of y and dxdy in equation(1),we get:
v+xdxdv=x2−[x.vx+(vx)2]=−v−v2
⇒xdxdv=−v2−2v=−v(v+2)
⇒v(v+2)dv=x−dx
⇒21[v(v+2)(v+2)−v]dv=x−dx
⇒21[v1−v+21]dv=x−dx
Integrating both sides,we get:
21[logv−log(v+2)]=−logx+logC
⇒21log(v+2v)=logxC
⇒v+2v=(xc)2
⇒xy+2xy=(xC)2
⇒y+2xy=x2C2
⇒y2+2xx2y=C2...(2)
Now,y=1 at x=1.
⇒1+21=C2
⇒C2=31
Substituting C2=31 in equation(2),we get:
y+2xx2y=31
⇒y+2x=3x2y
This is the required solution of the given differential equation.