Solveeit Logo

Question

Mathematics Question on Differential equations

For the differential equations, find the particular solution satisfying the given condition:x2dy+(xy+y2)dx=0;y=1x^2dy+(xy+y^2)dx=0;y=1 when x=1x=1

Answer

x2dy+(xy+y2)dx=0x^2dy+(xy+y^2)dx=0
x2dy=(xy+y2)dx⇒x^2dy=-(xy+y^2)dx
dydx=(xy+y2)x2...(1)⇒\frac{dy}{dx}=\frac{-(xy+y^2)}{x^2}...(1)
Let F(x,y)=(xy+y2)x2.F(x,y)=\frac{-(xy+y^2)}{x^2}.
F(λx,λy)=[λx.λy+(λy)2](λx)2=(xy+y2)x=λ°.F(x,y)∴F(λx,λy)=\frac{[λx.λy+(λy)^2]}{(λx)^2}=\frac{-(xy+y^2)}{x}=λ°.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
y=vxy=vx
ddx(y)=ddx(vx)⇒\frac{d}{dx}(y)=\frac{d}{dx}(vx)
dydx=v+xdvdx⇒\frac{dy}{dx}=v+x\frac{dv}{dx}
Substituting the values of y and dydx\frac{dy}{dx} in equation(1),we get:
v+xdvdx=[x.vx+(vx)2]x2=vv2v+x\frac{dv}{dx}=\frac{-[x.vx+(vx)^2]}{x^2}=-v-v^2
xdvdx=v22v=v(v+2)⇒x\frac{dv}{dx}=-v^2-2v=-v(v+2)
dvv(v+2)=dxx⇒\frac{dv}{v(v+2)}=\frac{-dx}{x}
12[(v+2)vv(v+2)]dv=dxx⇒\frac{1}{2}[\frac{(v+2)-v}{v(v+2)}]dv=\frac{-dx}{x}
12[1v1v+2]dv=dxx⇒\frac{1}{2}[\frac{1}{v}-\frac{1}{v+2}]dv=\frac{-dx}{x}
Integrating both sides,we get:
12[logvlog(v+2)]=logx+logC\frac{1}{2}[logv-log(v+2)]=-logx+logC
12log(vv+2)=logCx⇒\frac{1}{2}log(\frac{v}{v+2})=log\frac{C}{x}
vv+2=(cx)2⇒\frac{v}{v+2}=(\frac{c}{x})^2
yxyx+2=(Cx)2⇒\frac{\frac{y}{x}}{\frac{y}{x}+2}=(\frac{C}{x})^2
yy+2x=C2x2⇒\frac{y}{y+2x}=\frac{C^2}{x^2}
x2yy2+2x=C2...(2)⇒\frac{x^2y}{y^2+2x}=C^2...(2)
Now,y=1 at x=1.
11+2=C2⇒\frac{1}{1+2}=C^2
C2=13⇒C^2=\frac{1}{3}
Substituting C2=13C^2=\frac{1}{3} in equation(2),we get:
x2yy+2x=13\frac{x^2y}{y+2x}=\frac{1}{3}
y+2x=3x2y⇒y+2x=3x2y
This is the required solution of the given differential equation.