Question
Mathematics Question on Differential equations
For the differential equations, find the particular solution satisfying the given condition:(x+y)dy+(x−y)dy=0;y=1 when x=1
(x+y)dy+(x−y)dy=0
⇒dxdy=x+y−(x−y)...(1)
Let F(x,y)=x+y−(x−y).
∴F(λx,λy)=λx−λy−(λx−λy)=x+y−(x−y)=λ0.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
y=vx
⇒dxd(y)=dxd(vx)
⇒dxdy=v+xdxdv
Substituting the values of y and dxdy in equation(1),we get:
v+xdxdv=x+vx−(x−vx)
⇒v+xdxdv=v+1v−1
⇒xdxdv=v+1v−1−v=v+1v−1−v(v+1)
⇒xdxdv=v+1v−1−v2−v=v+1−(1+v2)
⇒1+v2(v+1)dv=x−dx
⇒[1+v2v+1+v21]dv=x−dx
Integrating both sides,we get:
21log(1+v2)+tan−1v=−logx+k
⇒log(1+v2)+tan−1v=−logx+k
⇒log[(1+v2).x2]+2tan−1v=2k
⇒log[(1+x2y2).x2]+2tan−1xy=2k
⇒log(x2+y2)+2tan−1xy=2k...(2)
Now,y=1 at x=1.
⇒log2+tan−1=2k
⇒log2+2×4π=2k
⇒4π+log2=2k
Substituting the value of 2k in equation(2),we get:
log(x2+y2)+2tan−1(xy)=4π+log2
This is the required solution of the given differential equation.