Solveeit Logo

Question

Mathematics Question on Differential equations

For the differential equations, find the particular solution satisfying the given condition:(x+y)dy+(xy)dy=0;y=1(x+y)dy+(x-y)dy=0;y=1 when x=1x=1

Answer

(x+y)dy+(xy)dy=0(x+y)dy+(x-y)dy=0
dydx=(xy)x+y...(1)⇒\frac{dy}{dx}=\frac{-(x-y)}{x+y}...(1)
Let F(x,y)=(xy)x+y.F(x,y)=\frac{-(x-y)}{x+y}.
F(λx,λy)=(λxλy)λxλy=(xy)x+y=λ0.F(x,y)∴F(λx,λy)=\frac{-(λx-λy)}{λx-λy}=\frac{-(x-y)}{x+y}=λ0.F(x,y)
Therefore,the given differential equation is a homogenous equation.
To solve it,we make the substitution as:
y=vxy=vx
ddx(y)=ddx(vx)⇒\frac{d}{dx}(y)=\frac{d}{dx}(vx)
dydx=v+xdvdx⇒\frac{dy}{dx}=v+x\frac{dv}{dx}
Substituting the values of y and dydx\frac{dy}{dx} in equation(1),we get:
v+xdvdx=(xvx)x+vxv+x\frac{dv}{dx}=\frac{-(x-vx)}{x+vx}
v+xdvdx=v1v+1⇒v+x\frac{dv}{dx}=\frac{v-1}{v+1}
xdvdx=v1v+1v=v1v(v+1)v+1⇒x\frac{dv}{dx}=\frac{v-1}{v+1}-v=\frac{v-1-v(v+1)}{v+1}
xdvdx=v1v2vv+1=(1+v2)v+1⇒x\frac{dv}{dx}=\frac{v-1-v^2-v}{v+1}=\frac{-(1+v^2)}{v+1}
(v+1)1+v2dv=dxx⇒\frac{(v+1)}{1+v^2}dv=\frac{-dx}{x}
[v1+v2+11+v2]dv=dxx⇒[\frac{v}{1+v^2}+\frac{1}{1+v^2}]dv=\frac{-dx}{x}
Integrating both sides,we get:
12log(1+v2)+tan1v=logx+k\frac{1}{2}log(1+v^2)+tan^{-1}v=-logx+k
log(1+v2)+tan1v=logx+k⇒log(1+v^2)+tan^{-1}v=-logx+k
log[(1+v2).x2]+2tan1v=2k⇒log[(1+v^2).x^2]+2tan^{-1}v=2k
log[(1+y2x2).x2]+2tan1yx=2k⇒log[(1+\frac{y^2}{x^2}).x^2]+2tan^{-1}\frac{y}{x}=2k
log(x2+y2)+2tan1yx=2k...(2)⇒log(x^2+y^2)+2tan^{-1}\frac{y}{x}=2k...(2)
Now,y=1y=1 at x=1.x=1.
log2+tan1=2k⇒log2+tan^{-1}=2k
log2+2×π4=2k⇒log2+2\times\frac{π}{4}=2k
π4+log2=2k⇒\frac{π}{4}+log2=2k
Substituting the value of 2k in equation(2),we get:
log(x2+y2)+2tan1(yx)=π4+log2log(x^2+y^2)+2tan{-1}(\frac{y}{x})=\frac{π}{4}+log2
This is the required solution of the given differential equation.