Solveeit Logo

Question

Mathematics Question on Differential equations

For the differential equations, find the general solution:dydx=1cosx1+cosx\frac{dy}{dx}=\frac{1-cosx}{1+cosx}

Answer

The given differential equation is:

dydx=1cosx1+cosx\frac{dy}{dx}=\frac{1-cosx}{1+cosx}

dydx=2sin2x22cos2x2=tan2x2⇒\frac{dy}{dx}={2sin^2\frac{x}{2}}{2cos^2\frac{x}{2}}=tan^2\frac{x}{2}

dydx=(sec2x21)⇒\frac{dy}{dx}=(sec^2\frac{x}{2}-1)

separating the variables,we get:

dy=(sec2x21)dxdy=(sec^2\frac{x}{2}-1)dx

Now,integrating both sides of this equation,we get:

dy=(sec2x21)dx=sec2x2dxdx∫dy=∫(sec^2\frac{x}{2}-1)dx=∫sec^2\frac{x}{2}dx-∫dx

y=2tanx2x+C⇒y=2tan\frac{x}{2}-x+C

This is the required general solution of the given differential equation.