Solveeit Logo

Question

Mathematics Question on Differential equations

For the differential equations, find the general solution:y log y dxx dy=0y\ log\ y \ dx-x\ dy=0

Answer

The given differential equation is:

y log y dxx dy=0y\ log\ y \ dx-x\ dy=0

y logy dx=x dy⇒y \ log∫y\ dx=x\ dy

dyylog y=dxx⇒\frac {dy}{y }log\ y=\frac {dx}{x}

Integrating both sides, we get:

dyylog y=dxx∫\frac {dy}{y }log\ y=∫\frac {dx}{x} ...(1)

Let log y=tLet \ log\ y=t

dd(log y)=dtdy∴\frac {d}{d}(log\ y)=\frac {dt}{dy}

1y=dtdy⇒\frac 1y=\frac {dt}{dy}

1ydy=dt⇒\frac {1}{y} dy=dt

Substituting this value in equation(1), we get:

dtt=dxx∫\frac {dt}{t}=∫\frac {dx}{x}

log t=log x+log C⇒log\ t =log\ x+log\ C

log (log y)=log Cx⇒log\ (log\ y)=log\ Cx

log y=Cx⇒log\ y=Cx

y=eCx⇒y=e^{Cx}

This is the required general solution of the given differential equation.