Question
Mathematics Question on Differential equations
For the differential equations, find the general solution:y log y dx−x dy=0
Answer
The given differential equation is:
y log y dx−x dy=0
⇒y log∫y dx=x dy
⇒ydylog y=xdx
Integrating both sides, we get:
∫ydylog y=∫xdx ...(1)
Let log y=t
∴dd(log y)=dydt
⇒y1=dydt
⇒y1dy=dt
Substituting this value in equation(1), we get:
∫tdt=∫xdx
⇒log t=log x+log C
⇒log (log y)=log Cx
⇒log y=Cx
⇒y=eCx
This is the required general solution of the given differential equation.