Solveeit Logo

Question

Mathematics Question on Differential equations

For the differential equations, find the general solution:dydx=(1+x2)(1+y2)\frac {dy}{dx} =(1+x^2)(1+y^2)

Answer

The given differential equation is:

dydx=(1+x2)(1+y2)\frac {dy}{dx} =(1+x^2)(1+y^2)

dy1+y2=(1+x2)dx⇒\frac {dy}{1+y^2}=(1+x^2)dx

Integrating both sides of this equation, we get:

dy1+y2=(1+x2)dx∫\frac {dy}{1+y^2}=∫(1+x^2)dx

tan1y=dx+x2dx⇒tan^{-1}y=∫dx+∫x^2dx

tan1y=x+x33+C⇒tan^{-1}y=x+\frac {x^3}{3}+C

This is the required general solution of the given differential equation.