Solveeit Logo

Question

Mathematics Question on Differential equations

For the differential equations, find the general solution: x5dydx=y5x^5\frac{dy}{dx}=-y^5

Answer

"The given differential equation is:
x5dydx=y5x^5\frac{dy}{dx}=-y^5
dyy5=dxx5⇒\frac{dy}{y^5}=\frac{-dx}{x^5}
dxx5+dyy5=0⇒\frac{dx}{x^5}+\frac{dy}{y^5}=0
Integrating both sides,we get:
dxx5+dyy5=k\int\frac{dx}{x^5}+∫\frac{dy}{y^5}=k(where k is any constant)
x5dx+y5dy=k⇒∫x^{-5}dx+∫y^{-5}dy=k
x44+y44=k⇒\frac{x^{-4}}{-4}+\frac{y^{-4}}{-4}=k
x4+y4=4k⇒x^{-4}+y^{-4}=-4k
x4+y4=C(C=4k)⇒x^{-4}+y^{-4}=C\,\,\,\,(C=-4k)
This is the required general solution of the given differential equation.