Solveeit Logo

Question

Mathematics Question on Differential equations

For the differential equations , find the general solution:(ex+ex)dy(exex)dx=0(e^x+e^{-x})dy-(e^x-e^{-x})dx=0

Answer

The given differential equation is:

(ex+ex)dy(exex)dx=0(e^x+e^{-x})dy-(e^x-e^{-x})dx=0

⇒$$(e^x+e^{-x})dy=(e^x-e^{-x})dx

dy=[exexex+ex]dx⇒dy=[\frac {e^x-e^{-x}}{e^x+e^{-x}}]dx

Integrating both sides of this equation, we get:

dy=[exexex+ex]dx+C∫dy=∫[\frac {e^x-e^{-x}}{e^x+e^{-x}}]dx +C

⇒$$y=∫[\frac {e^x-e^{-x}}{e^x+e^{-x}}]dx +C ...(1)

Let (ex+ex)=tLet \ (e^x+e^{-x})=t

Differentiating both sides with respect to x, we get:

ddx(ex+ex)\frac {d}{dx}(e^x+e^{-x}) = dtdx\frac {dt}{dx}

⇒$$e^x+e^{-x} = dtdx\frac {dt}{dx}

(exex)dx=dt⇒(e^x-e^{-x})dx = dt

Substituting this value in equation (1), we get:

y=1tdt+Cy=∫\frac {1}{t}dt+C

y=log (t)+C⇒y=log\ (t)+C

y=log (ex+ex)+C⇒y=log\ (e^x+e^{-x})+C

This is the required general solution of the given differential equation.