Question
Mathematics Question on Differential equations
For the differential equations , find the general solution: sec2xtan y dx+sex2ytan x dy=0
Answer
sec2x.tan y dx+sex2y.tan x dy=0
tan x.tan ysec2x.tan y dx+sex2y.tan x dy=0
⇒$$\frac {sec^2x}{tan\ x }dx + tan ysec2ydy = 0
⇒$$\frac {sec^2x}{tan\ x }dx = -tan ysec2ydy
Integrating both sides of this equation, we get:
∫$$\frac {sec^2x}{tan\ x }dx = -∫$$\frac {sec^2y}{tan\ y }dy ...(1)
Let tan x=t
∴dxd(tanx)=dxdt
⇒sec2x=dxdt
⇒sec2xdx=dt
Now, ∫$$\frac {sec^2x}{tan\ x }dx = ∫t1dt =log t = log (tan x)
Similarly, ∫$$\frac {sec^2x}{tan\ x }dy = log (tan y)
Substituting these values in equation (1), we get:
log (tan x)=−log (tan y)+log C
⇒log (tan x)=log (tan yC)
⇒tan x=tan yC
⇒tan xtan y=C
This is the required general solution of the given differential equation.