Solveeit Logo

Question

Mathematics Question on Differential equations

For the differential equations , find the general solution: sec2xtan y dx+sex2ytan x dy=0sec^2x tan\ y \ dx+sex^2y tan\ x \ dy = 0

Answer

sec2x.tan y dx+sex2y.tan x dy=0sec^2x. tan\ y \ dx+sex^2y. tan\ x \ dy = 0

sec2x.tan y dx+sex2y.tan x dytan x.tan y=0\frac {sec^2x. tan\ y \ dx+sex^2y .tan\ x \ dy}{tan \ x .tan \ y} = 0

⇒$$\frac {sec^2x}{tan\ x }dx + sec2ytan ydy\frac {sec^2y}{tan\ y }dy = 0

⇒$$\frac {sec^2x}{tan\ x }dx = -sec2ytan ydy\frac {sec^2y}{tan\ y }dy

Integrating both sides of this equation, we get:

∫$$\frac {sec^2x}{tan\ x }dx = -∫$$\frac {sec^2y}{tan\ y }dy ...(1)

Let tan x=tLet\ tan\ x=t

ddx(tanx)=dtdx\frac {d}{dx}(tanx)=\frac {dt}{dx}

sec2x=dtdx⇒sec^2x = \frac {dt}{dx}

sec2xdx=dt⇒sec^2x dx = dt

Now, ∫$$\frac {sec^2x}{tan\ x }dx = 1tdt∫\frac {1}{t}dt =log t log\ t = log (tan x)log\ (tan\ x)

Similarly, ∫$$\frac {sec^2x}{tan\ x }dy = log (tan y)log\ (tan\ y)

Substituting these values in equation (1), we get:

log (tan x)=log (tan y)+log Clog\ (tan\ x)=-log\ (tan\ y)+log\ C

log (tan x)=log (Ctan y)⇒log\ (tan\ x)=log\ (\frac {C}{tan\ y})

tan x=Ctan y⇒tan\ x=\frac {C}{tan\ y}

tan xtan y=C⇒tan\ x tan\ y=C

This is the required general solution of the given differential equation.