Solveeit Logo

Question

Mathematics Question on Differential equations

For the differential equations , find the general solution:dydx+y=1,  (y1)\frac {dy}{dx}+y=1, \ \ (y≠1)

Answer

The given differential equation is:

dydx+y=1\frac {dy}{dx}+y=1

dy+ydx=dx⇒dy+y dx=dx

dy=(1y)dx⇒dy=(1-y)dx

Separating the variables, we get:

dy1y=dx\frac {dy}{1-y}=dx

Now, integrating both sides, we get:

dy1y=dx∫\frac {dy}{1-y}=∫dx

log (1y)=x+log C⇒log\ (1-y)=x+log\ C

log Clog (1y)=x⇒-log\ C-log\ (1-y)=x

log C(1y)=x⇒log\ C(1-y)=-x

C(1y)=ex⇒C(1-y)=e^{-x}

1y=1Cex⇒1-y=\frac {1}{C}e^{-x}

y=1+Aex⇒y=1+Ae^{-x } (where A=1C)(where \ A=-\frac 1C)

This is the required general solution of the given differential equation.