Question
Mathematics Question on Differential equations
For the differential equations , find the general solution:extanydx+(1−ex)sec2ydy=0
Answer
The given differential equation is:
extanydx+(1−ex)sec2ydy=0
(1−ex)sec2ydy=−extanydx
Separating the variables,we get:
tanysec2ydy=1−ex−exdx
Integrating both sides,we get:
∫tanysec2ydy=∫1−ex−exdx...(1)
Let tany=u
⇒dyd(tany)=dydu
⇒sec2y=dydu
⇒sec2ydy=du
∴∫tanysec2ydy=∫udu=logu=log(tany)
Now,let 1−ex=t.
∴dxd(1−ex)=dxdt
⇒−ex=dxdt
⇒−exdx=dt
⇒∫1−ex−exdx=∫tdt=logt=log(1−ex)
Substituting the values of ∫tanysec2ydy and ∫1−ex−exdx in equation(1),we get:
⇒log(tany)=log(1−ex)+logC
⇒log(tany)=log[C(1−ex)]
⇒tany=C(1−ex)
This is the required general solution of the given differential equation.