Solveeit Logo

Question

Mathematics Question on Differential equations

For the differential equations , find the general solution:extanydx+(1ex)sec2ydy=0e^x tany\,\, dx+(1-e^x)sec^2y\,\,\, dy=0

Answer

The given differential equation is:
extanydx+(1ex)sec2ydy=0e^x tany\,\, dx+(1-e^x)sec^2y\,\,\, dy=0
(1ex)sec2ydy=extanydx(1-e^x)sec^2y\,\, dy=-e^x tany\,\, dx
Separating the variables,we get:
sec2ytanydy=ex1exdx\frac{sec^2y}{tany} dy=\frac{-e^x}{1-e^x} dx
Integrating both sides,we get:
sec2ytanydy=ex1exdx...(1)∫\frac{sec^2y}{tany} dy=∫\frac{-e^x}{1-e^x} dx...(1)
Let tany=utany=u
ddy(tany)=dudy⇒\frac{d}{dy}(tany)=\frac{du}{dy}
sec2y=dudy⇒sec^2y=\frac{du}{dy}
sec2ydy=du⇒sec^2 y\,\,dy=du
sec2ytanydy=duu=logu=log(tany)∴∫\frac{sec^2y}{tany}\,\, dy=∫\frac{du}{u}=logu=log(tany)
Now,let 1ex=t.1-e^x=t.
ddx(1ex)=dtdx∴\frac{d}{dx}(1-e^x)=\frac{dt}{dx}
ex=dtdx⇒-e^x=\frac{dt}{dx}
exdx=dt⇒-e^x dx=dt
ex1exdx=dtt=logt=log(1ex)⇒∫\frac{-e^x}{1-e^x} dx=∫\frac{dt}{t}=logt=log(1-e^x)
Substituting the values of sec2ytanydy∫\frac{sec^2y}{tan y} dy and ex1exdx∫\frac{-e^x}{1-e^x} dx in equation(1),we get:
log(tany)=log(1ex)+logC⇒log(tany)=log(1-e^x)+logC
log(tany)=log[C(1ex)]⇒log(tany)=log[C(1-e^x)]
tany=C(1ex)⇒tany=C(1-e^x)
This is the required general solution of the given differential equation.