Question
Mathematics Question on Differential equations
For the differential equations , find the general solution:dxdy=sin−1x
Answer
The given differential equation is:
dxdy=sin−1x
⇒dy=sin−1xdx
Integrating both sides,we get:
∫dy=∫sin−1xdx
⇒y=∫(sin−1x.1)dx
⇒y=sin−1x.∫(1)dx−∫[(dxd(sin−1x).∫(1)dx)]dx
⇒y=sin−1x.x−∫(1−x21.x)dx
⇒y=xsin−1x+∫1−x2−xdx...(1)
Let 1−x2=t.
⇒dxd(1−x2)=dxdt
⇒−2x=dxdt
⇒xdx=2−1dt
Substituting this value in equation(1),we get:
y=xsin−1x+∫21tdt
⇒y=xsin−1x+21.∫(t)−21dt
⇒y=xsin−1x+t+C
⇒y=xsin−1x+1−x2+C
This is the required general solution of the given differential equation.