Solveeit Logo

Question

Mathematics Question on Differential equations

For the differential equations , find the general solution:dydx=sin1x\frac{dy}{dx}=sin^{-1}x

Answer

The given differential equation is:
dydx=sin1x\frac{dy}{dx}=sin^{-1}x
dy=sin1xdx⇒dy=sin^{-1}xdx
Integrating both sides,we get:
dy=sin1xdx∫dy=∫sin^{-1}xdx
y=(sin1x.1)dx⇒y=∫(sin^{-1}x.1)dx
y=sin1x.(1)dx[(ddx(sin1x).(1)dx)]dx⇒y=sin^{-1}x.∫(1)dx-∫[(\frac{d}{dx}(sin^{-1}x).∫(1)dx)]dx
y=sin1x.x(11x2.x)dx⇒y=sin^{-1}x.x-∫(\frac{1}{\sqrt{1-x^2}}.x)dx
y=xsin1x+x1x2dx...(1)⇒y=xsin^{-1}x+∫\frac{-x}{\sqrt{1-x^2}}dx...(1)
Let 1x2=t.1-x^2=t.
ddx(1x2)=dtdx⇒\frac{d}{dx}(1-x^2)=\frac{dt}{dx}
2x=dtdx⇒-2x=\frac{dt}{dx}
xdx=12dt⇒xdx=\frac{-1}{2}dt
Substituting this value in equation(1),we get:
y=xsin1x+12tdty=xsin^{-1}x+∫\frac{1}{2}\sqrt{t}dt
y=xsin1x+12.(t)12dt⇒y=xsin^{-1}x+\frac{1}{2}.∫(t)-\frac{1}{2}dt
y=xsin1x+t+C⇒y=xsin^{-1}x+\sqrt{t}+C
y=xsin1x+1x2+C⇒y=xsin^{-1}x+\sqrt{1-x^2}+C
This is the required general solution of the given differential equation.