Solveeit Logo

Question

Mathematics Question on Differential equations

For the differential equations, find a particular solution satisfying the given condition:dydx=ytanx;y=1\frac{dy}{dx}=y tan\,\,x;y=1 when x=0

Answer

dydx=ytanx\frac{dy}{dx}=y tan\,\,x
dyy=tanxdx⇒\frac{dy}{y}=tanx\, dx
Integrating both sides,we get:
dyy=tanxdx∫\frac{dy}{y}=-∫tanx\, dx
logy=log(secx)+logC⇒logy=log(secx)+logC
logy=log(Csecx)⇒logy=log(C secx)
y=Csecx...(1)⇒y=C secx...(1)
Now,y=1 when x=0.
1=C×sec0⇒1=C\times sec0
1=C×1⇒1=C\times1
C=1⇒C=1
Substituting C=1 in equation(1),we get:
y=secx.y=secx.