Solveeit Logo

Question

Mathematics Question on Differential equations

For the differential equations, find a particular solution satisfying the given condition:cos(dydx)=α(αR);y=1cos(\frac{dy}{dx})=α(α∈R);y=1 when x=0

Answer

cos(dydx)=αcos(\frac{dy}{dx})=α
dydx=cos1α⇒\frac{dy}{dx}=cos^{-1}α
dy=cos1αdx⇒dy=cos^{-1}α\,\,dx
Integrating both sides,we get:
dy=cos1αdx∫dy=cos^{-1}α ∫dx
y=cos1α.x+C⇒y=cos^{-1}α.x+C
y=xcos1α+C...(1)⇒y=xcos^{-1}α+C...(1)
Now,y=1,when x=0.
1=0.cos1α+C⇒1=0.cos^{-1}α+C
⇒C=1
Substituting C=1 in equation(1),we get:
y=xcos1α+1y=xcos^{-1}α+1
y1x=cos1α⇒y-\frac{1}{x}=cos^{-1}α
cos(y1x)=α⇒cos(\frac{y-1}{x})=α