Question
Mathematics Question on Differential equations
For the differential equations, find a particular solution satisfying the given condition:x(x2−1)dxdy=1;y=0 when x=2
x(x2−1)dxdy=1
⇒dy=x(x2−1)dx
⇒dy=x(x−1)(x+1)1dx
Integrating both sides,we get:
∫dy=∫x(x−1)(x+1)1dx...(1)
Let x(x−1)(x+1)1=xA+x−1B+x+1C....(2)
⇒x(x−1)(x+1)1=A(x−1)(x+1)+Bx(x+1)+x(x−1)(x+1)Cx(x−1)
=(A+B+C)x2+(B−C)x−x(x−1)(x+1)A
Comparing the coefficients of x2,x,and constant,we get:
A=−1
B−C=0
A+B+C=0
Solving these equations,we get B=21and C=21.
Substituting the values of A,B,and C in equation(2),we get:
x(x−1)(x+1)12=x−1+21(x−1)+21(x+1)
Therefore,equation(1)becomes:
∫dy=−∫x1dx+21∫x1−1dx+21∫x1+1dx
⇒y=−logx+21log(x−1)+21log(x+1)+logk
⇒y=21log[x2k2(x−1)(x+1)]...(3)
Now,y=0 when x=2.
⇒0=21log[4k2(2−1)(2+1)]
⇒log(43k2)=0
⇒43k2=1
⇒3k2=4
⇒k2=34
Substituting the value of k2 in eqation(3),we get:
y=21log[3x24(x−1)(x+1)]
y=21log[3x24(x2−1)]