Solveeit Logo

Question

Mathematics Question on Differential equations

For the differential equations, find a particular solution satisfying the given condition:x(x21)dydx=1;y=0x(x^2-1)\frac{dy}{dx}=1;y=0 when x=2

Answer

x(x21)dydx=1x(x^2-1)\frac{dy}{dx}=1
dy=dxx(x21)⇒dy=\frac{dx}{x(x^2-1)}
dy=1x(x1)(x+1)dx⇒dy=\frac{1}{x(x-1)(x+1)}dx
Integrating both sides,we get:
dy=1x(x1)(x+1)dx...(1)∫dy=∫\frac{1}{x(x-1)(x+1)}dx...(1)
Let 1x(x1)(x+1)=Ax+Bx1+Cx+1....(2)\frac{1}{x(x-1)(x+1)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1}. ...(2)
1x(x1)(x+1)=A(x1)(x+1)+Bx(x+1)+Cx(x1)x(x1)(x+1)⇒\frac{1}{x(x-1)(x+1)}=A(x-1)(x+1)+Bx(x+1)+\frac{Cx(x-1)}{x(x-1)(x+1)}
=(A+B+C)x2+(BC)xAx(x1)(x+1)=(A+B+C)x^2+(B-C)x-\frac{A}{x(x-1)(x+1)}
Comparing the coefficients of x2,x,and constant,we get:
A=1A=-1
BC=0B-C=0
A+B+C=0A+B+C=0
Solving these equations,we get B=12B=\frac{1}{2}and C=12C=\frac{1}{2}.
Substituting the values of A,B,and C in equation(2),we get:
12x(x1)(x+1)=1x+12(x1)+12(x+1)\frac{12}{x(x-1)(x+1)}=\frac{-1}{x}+\frac{1}{2}(x-1)+\frac{1}{2}(x+1)
Therefore,equation(1)becomes:
dy=1xdx+121x1dx+121x+1dx∫dy=-∫\frac{1}{x}dx+\frac{1}{2}∫\frac{1}{x}-1dx+\frac{1}{2}∫\frac{1}{x}+1dx
y=logx+12log(x1)+12log(x+1)+logk⇒y=-logx+\frac{1}{2}log(x-1)+\frac{1}{2}log(x+1)+logk
y=12log[k2(x1)(x+1)x2]...(3)⇒y=\frac{1}{2}log[\frac{k^2(x-1)(x+1)}{x^2}]...(3)
Now,y=0 when x=2.
0=12log[k2(21)(2+1)4]⇒0=\frac{1}{2}log[\frac{k^2(2-1)(2+1)}{4}]
log(3k24)=0⇒log(\frac{3k^2}{4})=0
3k24=1⇒\frac{3k^2}{4}=1
3k2=4⇒3k^2=4
k2=43⇒k^2=\frac{4}{3}
Substituting the value of k2k^2 in eqation(3),we get:
y=12log[4(x1)(x+1)3x2]y=\frac{1}{2}log[\frac{4(x-1)(x+1)}{3x^2}]
y=12log[4(x21)3x2]y=\frac{1}{2}log[\frac{4(x^2-1)}{3x^2}]