Solveeit Logo

Question

Mathematics Question on Differential equations

For the differential equations , find a particular solution satisfying the given condition:(x3+x2+x+1)dydx=2x2+x;y=1(x^3+x^2+x+1)\frac{dy}{dx}=2x^2+x;y=1 when x=0x=0

Answer

The given differential equation is:
(x3+x2+x+1)dydx=2x2+x(x^3+x^2+x+1)\frac{dy}{dx}=2x^2+x
dydx=2x2+x(x3+x2+x+1)⇒\frac{dy}{dx}=2x^2+\frac{x}{(x^3+x^2+x+1)}
dy=2x2+x(x+1)(x2+1)dx⇒dy=2x^2+\frac{x}{(x+1)(x^2+1)}dx
Integration both sides,we get:
dy=2x2+x(x+1)(x2+1)dx...(1)∫dy=∫2x^2+\frac{x}{(x+1)(x^2+1)}dx...(1)
Let 2x2+x(x+1)(x2+1)=Ax+1+Bx+Cx2+1...(2)2x^2+\frac{x}{(x+1)(x^2+1)}=\frac{A}{x}+1+Bx+\frac{C}{x^2}+1...(2)
2x2+x(x+1)(x2+1)=Ax2+A+(Bx+C)(x+1)(x+1)(x2+1)⇒2x^2+\frac{x}{(x+1)(x^2+1)}=Ax^2+A+\frac{(Bx+C)(x+1)}{(x+1)(x^2+1)}
2x2+x=Ax2+A+Bx2+Bx+Cx+C⇒2x^2+x=Ax^2+A+Bx^2+Bx+Cx+C
2x2+x=(A+B)x2+(B+C)x+(A+C)⇒2x^2+x=(A+B)x^2+(B+C)x+(A+C)
Comparing the coefficients of x2x^2 and xx,we get:
A+B=2A+B=2
B+C=1B+C=1
A+C=0A+C=0
Solving these equations,we get:
A=12,B=32,andC=12A=\frac{1}{2},B=\frac{3}{2},and C=\frac{-1}{2}
Substituting the values of A,B,and C in equation(2),we get:
2x2+x(x+1)(x2+1)=12.1(x+1)+12(3x1)(x2+1)2x^2+\frac{x}{(x+1)(x^2+1)}=\frac{1}{2}.\frac{1}{(x+1)}+\frac{1}{2}\frac{(3x-1)}{(x^2+1)}
Therefore,equation(1)becomes:
dy=121x+1dx+123x1x2+1dx∫dy=\frac{1}{2}∫\frac{1}{x}+1 dx+\frac{1}{2}∫3x-\frac{1}{x^2}+1dx
y=12log(x+1)+32xx2+1dx121x2+1dx⇒y=\frac{1}{2}log(x+1)+\frac{3}{2}∫\frac{x}{x^2+1}dx-\frac{1}{2}∫\frac{1}{x^2}+1dx
y=12log(x+1)+34.2xx2+1dx12tan1x+C⇒y=\frac{1}{2}log(x+1)+\frac{3}{4}.∫\frac{2x}{x^2+1}dx-\frac{1}{2}tan^{-1}x+C
y=12log(x+1)+34log(x2+1)12tan1x+C⇒y=\frac{1}{2}log(x+1)+\frac{3}{4}log(x^2+1)-\frac{1}{2}tan^{-1}x+C
y=14[2log(x+1)+3log(x2+1)]12tan1x+C⇒y=\frac{1}{4}[2log(x+1)+3log(x^2+1)]-\frac{1}{2}tan^{-1}x+C
y=14[(x+1)2(x2+1)3]12tan1x+C...(3)⇒y=\frac{1}{4}[(x+1)^2(x^2+1)^3]-\frac{1}{2}tan^{-1}x+C...(3)
Now,y=1,when x=0.
1=14log(1)12tan10+C⇒1=\frac{1}{4}log(1)-\frac{1}{2}tan^{-1}0+C
1=14×012×0+C⇒1=\frac{1}{4}\times0-\frac{1}{2}\times0+C
C=1⇒C=1
Substituting C=1 in equation(3),we get:
y=14[log(x+1)2(x2+1)3]12tan1x+1.y=\frac{1}{4}[log(x+1)^2(x^2+1)^3]-\frac{1}{2}tan^{-1}x+1.