Question
Mathematics Question on Differential equations
For the differential equations , find a particular solution satisfying the given condition:(x3+x2+x+1)dxdy=2x2+x;y=1 when x=0
The given differential equation is:
(x3+x2+x+1)dxdy=2x2+x
⇒dxdy=2x2+(x3+x2+x+1)x
⇒dy=2x2+(x+1)(x2+1)xdx
Integration both sides,we get:
∫dy=∫2x2+(x+1)(x2+1)xdx...(1)
Let 2x2+(x+1)(x2+1)x=xA+1+Bx+x2C+1...(2)
⇒2x2+(x+1)(x2+1)x=Ax2+A+(x+1)(x2+1)(Bx+C)(x+1)
⇒2x2+x=Ax2+A+Bx2+Bx+Cx+C
⇒2x2+x=(A+B)x2+(B+C)x+(A+C)
Comparing the coefficients of x2and x,we get:
A+B=2
B+C=1
A+C=0
Solving these equations,we get:
A=21,B=23,andC=2−1
Substituting the values of A,B,and C in equation(2),we get:
2x2+(x+1)(x2+1)x=21.(x+1)1+21(x2+1)(3x−1)
Therefore,equation(1)becomes:
∫dy=21∫x1+1dx+21∫3x−x21+1dx
⇒y=21log(x+1)+23∫x2+1xdx−21∫x21+1dx
⇒y=21log(x+1)+43.∫x2+12xdx−21tan−1x+C
⇒y=21log(x+1)+43log(x2+1)−21tan−1x+C
⇒y=41[2log(x+1)+3log(x2+1)]−21tan−1x+C
⇒y=41[(x+1)2(x2+1)3]−21tan−1x+C...(3)
Now,y=1,when x=0.
⇒1=41log(1)−21tan−10+C
⇒1=41×0−21×0+C
⇒C=1
Substituting C=1 in equation(3),we get:
y=41[log(x+1)2(x2+1)3]−21tan−1x+1.