Solveeit Logo

Question

Mathematics Question on Differential equations

For the differential equation xydydx=(x+2)(y+2)xy\frac{dy}{dx}=(x+2)(y+2),find the solution curve passing through the point(1,1)(1,-1).

Answer

The differential equation of the given curve is:
xydydx=(x+2)(y+2)xy\frac{dy}{dx}=(x+2)(y+2)
(yy+2)dy=(x+2x)dx⇒(\frac{y}{y+2})dy=(\frac{x+2}{x})dx
(12y+2)dy=(1+2x)dx⇒(1-\frac{2}{y+2})dy=(1+\frac{2}{x})dx
Integrating both sides,we get:
(12y+2)dy=(1+2x)dx∫(1-\frac{2}{y+2})dy=∫(1+\frac{2}{x})dx
dy21y+2dy=dx+21xdx⇒∫dy-2∫\frac{1}{y}+2dy=∫dx+2∫\frac{1}{x}dx
y2log(y+2)=x+2logx+C⇒y-2log(y+2)=x+2logx+C
yxC=logx2+log(y+2)2⇒y-x-C=logx^2+log(y+2)^2
yxC=log[x2(y+2)2]...(1)⇒y-x-C=log[x^2(y+2)^2]...(1)
Now,the curve passes through (1,-1).
11C=log[(1)2(1+2)2]⇒-1-1-C=log[(1)^2(-1+2)^2]
2C=log1=0⇒-2-C=log1=0
C=2⇒C=-2
Substituting C=-2 in equation(1),we get:
yx+2=log[x2(y+2)2]y-x+2=log[x^2(y+2)^2]
This is the required solution of the given curve.