Solveeit Logo

Question

Question: For the curve \(y^{n} = a^{n - 1}x,\) the sub-normal at any point is constant, the value of n must ...

For the curve yn=an1x,y^{n} = a^{n - 1}x, the sub-normal at any point is

constant, the value of n must be

A

2

B

3

C

0

D

1

Answer

2

Explanation

Solution

yn=an1xy^{n} = a^{n - 1}xnyn1dydx=an1ny^{n - 1}\frac{dy}{dx} = a^{n - 1}(dydx)=an1nyn1\left( \frac{dy}{dx} \right) = \frac{a^{n - 1}}{ny^{n - 1}}

\therefore Length of the subnormal = ydydx=yan1nyn1=an1y2nny\frac{dy}{dx} = \frac{ya^{n - 1}}{ny^{n - 1}} = \frac{a^{n - 1}y^{2 - n}}{n}

We also know that if the subnormal is constant, then an1n.y2n\frac{a^{n - 1}}{n}.y^{2 - n} should not contain y.

Therefore, 2n=02 - n = 0 or n=2n = 2.