Solveeit Logo

Question

Question: For the curve \(y = 3\sin\theta\cos\theta\), \(x = e^{\theta}\sin\theta,\) \(\theta \leq \theta \le...

For the curve y=3sinθcosθy = 3\sin\theta\cos\theta, x=eθsinθ,x = e^{\theta}\sin\theta,

θθπ\theta \leq \theta \leq \pi; tangent is parallel to x-axis, then θ\theta =

A

0

B

π2\frac{\pi}{2}

C

π4\frac{\pi}{4}

D

π6\frac{\pi}{6}

Answer

0

Explanation

Solution

Given y=3sinθcosθ,x=eθsinθy = 3\sin\theta\cos\theta,x = e^{\theta}\sin\theta

For tangent parallel to xx -axis, we should have dydx=0\frac{dy}{dx} = 0

dydθ=0\frac{dy}{d\theta} = 0and dxdθ0\frac{dx}{d\theta} \neq 0

ddθ\frac { d } { d \theta } (3sin2θ2)=0\left( 3\frac{\sin 2\theta}{2} \right) = 0

3cos2θ=03\cos 2\theta = 0 ⇒ 2θ = π2\frac{\pi}{2}

θ=π4\theta = \frac{\pi}{4}

Note that for θ=π4\theta = \frac{\pi}{4}, dxdθ=eθ\frac{dx}{d\theta} = e^{\theta} [sinθ+cosθ\sin\theta + \cos\theta] ≠ 0.