Solveeit Logo

Question

Question: For the curve \[y = 3\sin \theta \cos \theta , x = {e^\theta }\sin \theta \], \[0 \leqslant \theta \...

For the curve y=3sinθcosθ,x=eθsinθy = 3\sin \theta \cos \theta , x = {e^\theta }\sin \theta , 0θπ0 \leqslant \theta \leqslant \pi , the tangent is parallel to x-axis when θ\theta is
A. π4\dfrac{\pi }{4}
B. π2\dfrac{\pi }{2}
C. 3π4\dfrac{{3\pi }}{4}
D. π6\dfrac{\pi }{6}

Explanation

Solution

We differentiate both y and x with respect to θ\theta and write the value of dydθ\dfrac{{dy}}{{d\theta }} and dxdθ\dfrac{{dx}}{{d\theta }}. Then divide the differentiation of y by differentiation of x to get the value of dydx\dfrac{{dy}}{{dx}} which gives us the tangent. Then we equate the value to zero as the tangent is parallel to x-axis and a line parallel to x has y coordinate as constant so the differentiation of the line parallel to x-axis is equal to zero.

Complete step-by-step answer:
We have curves y=3sinθcosθy = 3\sin \theta \cos \theta and x=eθsinθx = {e^\theta }\sin \theta .
First we will differentiate y with respect to θ\theta .
dydθ=ddθ(3sinθcosθ)\Rightarrow \dfrac{{dy}}{{d\theta }} = \dfrac{d}{{d\theta }}(3\sin \theta \cos \theta )
Taking out the constant term we get
dydθ=3×ddθ(sinθcosθ)\Rightarrow \dfrac{{dy}}{{d\theta }} = 3 \times \dfrac{d}{{d\theta }}(\sin \theta \cos \theta )
Now using product rule of differentiation i.e. ddx(m×n)=m×dndx+n×dmdx\dfrac{d}{{dx}}(m \times n) = m \times \dfrac{{dn}}{{dx}} + n \times \dfrac{{dm}}{{dx}}. Substitute the values of m=sinθ,n=cosθm = \sin \theta ,n = \cos \theta .
dydθ=3[sinθ×ddθ(cosθ)+cosθ×ddθ(sinθ)]\Rightarrow \dfrac{{dy}}{{d\theta }} = 3\left[ {\sin \theta \times \dfrac{d}{{d\theta }}(\cos \theta ) + \cos \theta \times \dfrac{d}{{d\theta }}(\sin \theta )} \right]
Substituting the values of ddθsinθ=cosθ,ddθcosθ=sinθ\dfrac{d}{{d\theta }}\sin \theta = \cos \theta ,\dfrac{d}{{d\theta }}\cos \theta = - \sin \theta we get

dydθ=3[sinθ×(sinθ)+cosθ×(cosθ)] dydθ=3[cos2θsin2θ]  \Rightarrow \dfrac{{dy}}{{d\theta }} = 3\left[ {\sin \theta \times ( - \sin \theta ) + \cos \theta \times (\cos \theta )} \right] \\\ \Rightarrow \dfrac{{dy}}{{d\theta }} = 3\left[ {{{\cos }^2}\theta - {{\sin }^2}\theta } \right] \\\

Using the formula a2b2=(ab)(a+b){a^2} - {b^2} = (a - b)(a + b)where a=cosθ,b=sinθa = \cos \theta ,b = \sin \theta , we can write
dydθ=3[(cosθsinθ)(cosθ+sinθ)]\Rightarrow \dfrac{{dy}}{{d\theta }} = 3\left[ {(\cos \theta - \sin \theta )(\cos \theta + \sin \theta )} \right] … (1)
Now we will differentiate x with respect to θ\theta .
dxdθ=ddθ(eθsinθ)\Rightarrow \dfrac{{dx}}{{d\theta }} = \dfrac{d}{{d\theta }}({e^\theta }\sin \theta )
Now using product rule of differentiation i.e. ddx(m×n)=m×dndx+n×dmdx\dfrac{d}{{dx}}(m \times n) = m \times \dfrac{{dn}}{{dx}} + n \times \dfrac{{dm}}{{dx}}. Substitute the values of m=eθ,n=sinθm = {e^\theta },n = \sin \theta .
dxdθ=[eθ×ddθ(sinθ)+sinθ×ddθ(eθ)]\Rightarrow \dfrac{{dx}}{{d\theta }} = \left[ {{e^\theta } \times \dfrac{d}{{d\theta }}(\sin \theta ) + \sin \theta \times \dfrac{d}{{d\theta }}({e^\theta })} \right]
Substituting the values of ddθsinθ=cosθ,ddθeθ=eθ\dfrac{d}{{d\theta }}\sin \theta = \cos \theta ,\dfrac{d}{{d\theta }}{e^\theta } = {e^\theta } we get
dxdθ=[eθ(cosθ)+sinθ×(eθ)]\Rightarrow \dfrac{{dx}}{{d\theta }} = \left[ {{e^\theta }(\cos \theta ) + \sin \theta \times ({e^\theta })} \right]
dxdθ=[eθ(cosθ+sinθ)]\Rightarrow \dfrac{{dx}}{{d\theta }} = \left[ {{e^\theta }(\cos \theta + \sin \theta )} \right] … (2)
Now we know that dydx=dydθ×dθdx\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{d\theta }} \times \dfrac{{d\theta }}{{dx}}. Substituting the values from (1) and (2) .
dydx=3[(cosθsinθ)(cosθ+sinθ)]×1[eθ(cosθ+sinθ)]\dfrac{{dy}}{{dx}} = 3\left[ {(\cos \theta - \sin \theta )(\cos \theta + \sin \theta )} \right] \times \dfrac{1}{{[{e^\theta }(\cos \theta + \sin \theta )]}}
Cancel out same terms from numerator and denominator we get

dydx=3[(cosθsinθ)]×1[eθ] dydx=3(cosθsinθ)eθ  \dfrac{{dy}}{{dx}} = 3\left[ {(\cos \theta - \sin \theta )} \right] \times \dfrac{1}{{[{e^\theta }]}} \\\ \dfrac{{dy}}{{dx}} = \dfrac{{3(\cos \theta - \sin \theta )}}{{{e^\theta }}} \\\

Now we equate the slope of the tangent to zero.
3(cosθsinθ)eθ=0\Rightarrow \dfrac{{3(\cos \theta - \sin \theta )}}{{{e^\theta }}} = 0
Cross multiplying the denominator of LHs to numerator of RHS we get

3(cosθsinθ)=0 cosθsinθ=0  \Rightarrow 3(\cos \theta - \sin \theta ) = 0 \\\ \Rightarrow \cos \theta - \sin \theta = 0 \\\

Shifting the value of sin to opposite side of the equation we get
cosθ=sinθ\Rightarrow \cos \theta = \sin \theta
Dividing both sides by cosθ\cos \theta we get

cosθcosθ=sinθcosθ 1=tanθ  \Rightarrow \dfrac{{\cos \theta }}{{\cos \theta }} = \dfrac{{\sin \theta }}{{\cos \theta }} \\\ \Rightarrow 1 = \tan \theta \\\

Since, we know the value of tanθ=1\tan \theta = 1 when θ=π4\theta = \dfrac{\pi }{4}.

So, the correct answer is “Option A”.

Note: Students mostly make mistake of writing the fraction as yx\dfrac{y}{x} and then try to differentiate which is wrong because both x and y are in terms of θ\theta so we differentiate them with respect to θ\theta .