Solveeit Logo

Question

Mathematics Question on Application of derivatives

For the curve x2+4xy+8y2=64x^2+4xy+8y^2=64 the tangents are parallel to the x-axis only at the points

A

(0,22)\left(0, 2\sqrt{2}\right) and (0,22)\left(0, -2\sqrt{2}\right)

B

(8,4)(8,-4) and (8,4)(-8,4)

C

(82,22)\left(8\sqrt{2}, -2\sqrt{2}\right) and (82,22)\left(-8\sqrt{2}, 2\sqrt{2}\right)

D

(8,0)(8,0) and (8,0)(-8,0)

Answer

(8,4)(8,-4) and (8,4)(-8,4)

Explanation

Solution

Given curve is, x2+4xy+8y2=64x^{2}+4 x y+8 y^{2}=64 \quad...(i)
On differentiating w.r.t xx, we get
2x+4(y+xdydx)+16ydydx=02 x+4\left(y+x \frac{d y}{d x}\right)+16 y \frac{d y}{d x}=0
2x+4y+(4x+16y)dydx=0\Rightarrow 2 x+4 y+(4 x+16 y) \frac{d y}{d x}=0
dydx=(x+2y)2(x+4y)\Rightarrow \frac{d y}{d x}=-\frac{(x+2 y)}{2(x+4 y)}
Since, tangent are parallel to xx-axis only.
i.e., dydx=0\frac{d y}{d x}=0
(x+2y)2(x+4y)=0\Rightarrow -\frac{(x+2 y)}{2(x+4 y)}=0
x+2y=0\Rightarrow x+2 y=0 ...(ii)
Now, on putting the valus of xx from Eqs. (i) in (ii), we get
4y28y2+8y2=644 y^{2}-8 y^{2}+8 y^{2}=64
y2=16\Rightarrow y^{2}=16
y=±4\Rightarrow y=\pm 4
From E (ii) When y=4,x=8y=4, x=-8
and when y=4,x=8y=-4, x=8
Hence required points are (8,4)(-8,4) and (84)(8-4)