Question
Mathematics Question on Differential equations
For the curve
C:(x2+y2–3)+(x2–y2–1)5=0,
the value of 3y’–y3y”,at the point
(α,α),α>0, on C is equal to ________.
Answer
∵C:(x2+y2–3)+(x2–y2–1)5=0for point (α,α).
α2+α2–3+(α2–α2–1)5=0
∴ α=2
On differentiating(x2+y2–3)+(x2–y2–1)5=0 we get x+yy’+5(x2–y2–1)4(x–yy’)=0…(i)
Whenx=y=2then y’=23
Again on differentiating eq. (i) we get :
1+(y’)2+yy”+20(x2–y2–1)(2x–2yy’)
(x–y’y)+5(x2–y2–1)4(1–y’2–yy”)=0
Forx=y=2and y’=23
we get y”=−4223
\begin{array}{l}\therefore 3y’ – y^3y” =3\cdot\frac{3}{2}-\left(\sqrt{2}\right)^3\cdot\left(-\frac{23}{4\sqrt{2}}\right)\\\= 16\end{array}