Solveeit Logo

Question

Mathematics Question on Application of derivatives

For the curve 4x5=5y44x^5 = 5y^4, the ratio of the cube of the subtangent at a point on the curve to the square of the subnormal at the same point is

A

(45)4\left(\frac {4}{5}\right)^4

B

(54)4\left(\frac {5}{4}\right)^4

C

x(45)4x\left(\frac {4}{5}\right)^4

D

y(54)4y\left(\frac {5}{4}\right)^4

Answer

(45)4\left(\frac {4}{5}\right)^4

Explanation

Solution

The given curve is 4x5=5y44 x^{5}=5 y^{4}
20x4=20y3dydx\Rightarrow 20 x^{4}=20 y^{3} \cdot \frac{d y}{d x}
dydx=x4y3\Rightarrow \frac{d y}{d x}=\frac{x^{4}}{y^{3}}
We know that
Length of subnormal (SN)=(ydxdy)=(y4x4)(S N)=\left(y \cdot \frac{d x}{d y}\right)=\left(\frac{y^{4}}{x^{4}}\right)
Length of subtangent (ST)=(ydydx)=(x4y2)(S T)=\left(y \cdot \frac{d y}{d x}\right)=\left(\frac{x^{4}}{y^{2}}\right)
But given condition is
(SN)3(ST)2=(y4/x4)3(x4/y2)2=(y4x4)3×(y2x4)2\frac{(S N)^{3}}{(S T)^{2}}=\frac{\left(y^{4} / x^{4}\right)^{3}}{\left(x^{4} / y^{2}\right)^{2}}=\left(\frac{y^{4}}{x^{4}}\right)^{3} \times\left(\frac{y^{2}}{x^{4}}\right)^{2}
=y12x12×y4x8=(y16x20)=\frac{y^{12}}{x^{12}} \times \frac{y^{4}}{x^{8}}=\left(\frac{y^{16}}{x^{20}}\right)
=(y4x5)4=\left(\frac{y^{4}}{x^{5}}\right)^{4}
=(45)4=4454=\left(\frac{4}{5}\right)^{4}=\frac{4^{4}}{5^{4}}
(4x5=5y4)\left(\because 4 x^{5}=5 y^{4}\right)