Solveeit Logo

Question

Question: For the circuit shown, with \({R_1}{\text{ }} = {\text{ }}1{\text{ }}\Omega \), \({R_2}{\text{ }} = ...

For the circuit shown, with R1 = 1 Ω{R_1}{\text{ }} = {\text{ }}1{\text{ }}\Omega , R2 = 2 Ω{R_2}{\text{ }} = {\text{ }}2{\text{ }}\Omega , E1 = 2 V{E_1}{\text{ }} = {\text{ }}2{\text{ }}V and E2 = E3 = 4 V{E_2}{\text{ }} = {\text{ }}{E_3}{\text{ }} = {\text{ }}4{\text{ }}V, the potential difference between the points ‘aa’ and ‘bb’ is approximately (in VV):

Explanation

Solution

We will use the basic equations of equivalent resistance and potential difference. Finally, we will substitute the values in their respective positions and then calculate the actual numerical value.

Formulae Used:
RSeries = R1 + R2 + ... + Rn{R_{Series}}{\text{ }} = {\text{ }}{R_1}{\text{ }} + {\text{ }}{R_2}{\text{ }} + {\text{ }}...{\text{ }} + {\text{ }}{R_n}
1RParallel = 1R1 + 1R2 + ... + 1Rn\Rightarrow \dfrac{1}{{{R_{Parallel}}}}{\text{ }} = {\text{ }}\dfrac{1}{{{R_1}}}{\text{ }} + {\text{ }}\dfrac{1}{{{R_2}}}{\text{ }} + {\text{ }}...{\text{ }} + {\text{ }}\dfrac{1}{{{R_n}}}
And,
I = VR\Rightarrow I{\text{ }} = {\text{ }}\dfrac{V}{R}
V = IR\Rightarrow V{\text{ }} = {\text{ }}IR

Complete step by step answer:
Here, we have to calculate the potential difference between aa and bb. Thus, we will calculate the resistances for each cell. For cell E1{E_1}, the net resistance will be
R1 + R1=2R1{R_1}{\text{ }} + {\text{ }}{R_1} = 2{R_1}
Again, for the cell E2{E_2}, the resistance is R2{R_2}
Also, for the cell E3{E_3}, the resistance is
R1 + R1 = 2R1{R_1}{\text{ }} + {\text{ }}{R_1}{\text{ }} = {\text{ }}2{R_1}
Now, the current out of cell E1{E_1} will be E12R1\dfrac{{{E_1}}}{{2{R_1}}}.
Through E2{E_2} is E2R2\dfrac{{{E_2}}}{{{R_2}}}
And, through E3{E_3} is E32R1\dfrac{{{E_3}}}{{2{R_1}}}
Thus, total current through the circuit where aa and bb are the endpoints:
Iab = E12R1 + E2R2 + E32R1{I_{ab}}{\text{ }} = {\text{ }}\dfrac{{{E_1}}}{{2{R_1}}}{\text{ }} + {\text{ }}\dfrac{{{E_2}}}{{{R_2}}}{\text{ }} + {\text{ }}\dfrac{{{E_3}}}{{2{R_1}}}

Now, if we consider the points aa and bb as the end points. All the individual cell circuits will be in parallel with each other. Thus, the net resistance will be
1Rab = 12R1 + 1R2 + 12R1\dfrac{1}{{{R_{ab}}}}{\text{ }} = {\text{ }}\dfrac{1}{{2{R_1}}}{\text{ }} + {\text{ }}\dfrac{1}{{{R_2}}}{\text{ }} + {\text{ }}\dfrac{1}{{2{R_1}}}
Thus, the potential difference between aa and bb will be
Vab = Iab Rab{V_{ab}}{\text{ }} = {\text{ }}{I_{ab}}{\text{ }}{R_{ab}}
This equation can also be written as
Vab = Iab1Rab{V_{ab}}{\text{ }} = {\text{ }}\dfrac{{{I_{ab}}}}{{\dfrac{1}{{{R_{ab}}}}}}
Now,
Substituting the values, we get
Vab= E12R1 + E2R2 + E32R112R1 + 1R2 + 12R1{V_{ab}}\, = {\text{ }}\dfrac{{\dfrac{{{E_1}}}{{2{R_1}}}{\text{ }} + {\text{ }}\dfrac{{{E_2}}}{{{R_2}}}{\text{ }} + {\text{ }}\dfrac{{{E_3}}}{{2{R_1}}}}}{{\dfrac{1}{{2{R_1}}}{\text{ }} + {\text{ }}\dfrac{1}{{{R_2}}}{\text{ }} + {\text{ }}\dfrac{1}{{2{R_1}}}}}
Further, we get
Vab = 2E1R1R2 + 4E2R12 + 2E3R1R22R1R2 + 4R12 + 2R1R2{V_{ab}}{\text{ }} = {\text{ }}\dfrac{{2{E_1}{R_1}{R_2}{\text{ }} + {\text{ }}4{E_2}{R_1}^2{\text{ }} + {\text{ }}2{E_3}{R_1}{R_2}}}{{2{R_1}{R_2}{\text{ }} + {\text{ }}4{R_1}^2{\text{ }} + {\text{ }}2{R_1}{R_2}}}

Taking 2R12{R_1} common from the numerator and the denominator and cancelling, we get
Vab = E1R2 + 2E2R1 + E3R22R2  + 2R1{V_{ab}}{\text{ }} = {\text{ }}\dfrac{{{E_1}{R_2}{\text{ }} + {\text{ }}2{E_2}{R_1}{\text{ }} + {\text{ }}{E_3}{R_2}}}{{2{R_2}\; + {\text{ }}2{R_1}}}
Then, we get
Vab = (E1 + E3)R2 + 2E2R12(R1 +R2){V_{ab}}{\text{ }} = {\text{ }}\dfrac{{({E_1}{\text{ }} + {\text{ }}{E_3}){R_2}{\text{ }} + {\text{ }}2{E_2}{R_1}}}{{2({R_1}{\text{ }} + {R_2})}}
Now, substituting the given values in this equation, we get
Vab = (2 + 4) × 2 + 2 × 4 × 12 × (1 + 3){V_{ab}}{\text{ }} = {\text{ }}\dfrac{{(2{\text{ }} + {\text{ }}4){\text{ }} \times {\text{ }}2{\text{ }} + {\text{ }}2{\text{ }} \times {\text{ }}4{\text{ }} \times {\text{ }}1}}{{2{\text{ }} \times {\text{ }}(1{\text{ }} + {\text{ }}3)}}
After further evaluation, we get
Vab = 12 + 48{V_{ab}}{\text{ }} = {\text{ }}\dfrac{{12{\text{ }} + {\text{ }}4}}{8}
Then, we get
Vab = 168{V_{ab}}{\text{ }} = {\text{ }}\dfrac{{16}}{8}
Thus, we get
Vab = 2 V\therefore {V_{ab}}{\text{ }} = {\text{ }}2{\text{ }}V

Hence, the potential difference between the points ‘aa’ and ‘bb’ is 2 V.

Note: Students often commit errors in considering the type of circuit it will form when we take some other point within the given circuit as end points. This would lead them applying the wrong formula and eventually reaching an incorrect answer. If students are confused with what the new circuit will be, it is always a safe method to redraw the circuit taking the new endpoints. This would reduce the possibility of committing a mistake.