Solveeit Logo

Question

Question: For the circuit shown in the figure the value of charge on either plate is– ![](https://cdn.pureess...

For the circuit shown in the figure the value of charge on either plate is–

A

CE

B

CER1(R1+r)\frac { \mathrm { CER } _ { 1 } } { \left( \mathrm { R } _ { 1 } + \mathrm { r } \right) }

C

CER2(R2+r)\frac { \mathrm { CER } _ { 2 } } { \left( \mathrm { R } _ { 2 } + \mathrm { r } \right) }

D

CER1(R2+r)\frac { \mathrm { CER } _ { 1 } } { \left( \mathrm { R } _ { 2 } + \mathrm { r } \right) }

Answer

CER1(R1+r)\frac { \mathrm { CER } _ { 1 } } { \left( \mathrm { R } _ { 1 } + \mathrm { r } \right) }

Explanation

Solution

I =

\ VR1\mathrm { V } _ { \mathrm { R } _ { 1 } } = IR1 = R1R1+r\frac { \mathrm { R } _ { 1 } } { \mathrm { R } _ { 1 } + \mathrm { r } } E

Q VR1\mathrm { V } _ { \mathrm { R } _ { 1 } } = VC +

But VR2\mathrm { V } _ { \mathrm { R } _ { 2 } } = 0

\ VC = VR1\mathrm { V } _ { \mathrm { R } _ { 1 } } =(R1R1+r)\left( \frac { \mathrm { R } _ { 1 } } { \mathrm { R } _ { 1 } + \mathrm { r } } \right)E

\ QC = CVC = (R1R1+r)\left( \frac { \mathrm { R } _ { 1 } } { \mathrm { R } _ { 1 } + \mathrm { r } } \right) CE