Solveeit Logo

Question

Physics Question on laws of motion

For the arrangement in the figure, the particle M1M_{1} attached to one end of a string which moves on a horizontal table in a circle of radius =l2=\frac{l}{2} (where ll is the length of the string) with the constant angular speed ω\omega . The other end of the string attached to mass M2M_{2} which rests on a vertical rod. When the rod collapse, the acceleration of mass M2M_{2} at that instant

A

gg

B

ω2l2\frac{\omega ^{2} l}{2}

C

2M2gM1l(ω)22(M1+M2)\frac{2 M_{2} g - M_{1} l \left(\omega \right)^{2}}{2 \left(M_{1} + M_{2}\right)}

D

M2g+M1lω2M1+M2\frac{M_{2} g + M_{1} l \omega ^{2}}{M_{1} + M_{2}}

Answer

2M2gM1l(ω)22(M1+M2)\frac{2 M_{2} g - M_{1} l \left(\omega \right)^{2}}{2 \left(M_{1} + M_{2}\right)}

Explanation

Solution

From Newton's second law TM1ω2l2=M1aT-M_{1}\omega ^{2}\frac{l}{2}=M_{1}a And M2gT=M2aM_{2} \, g-T=M_{2}a After solving above equations, we get a=2M2gM1l(ω)22(M1+M2)a=\frac{2 M_{2} g - M_{1} l \left(\omega \right)^{2}}{2 \left(M_{1} + M_{2}\right)}