Solveeit Logo

Question

Quantitative Aptitude Question on Logarithms

For some positive real number xx , if log3(x)+logx(25)logx(0.008)=163log_{\sqrt 3}(x)+\frac{log_x(25)}{log_x(0.008)}=\frac{16}{3}, then the value of log3(3x2)log_3(3x^2) is

A

4

B

6

C

7

D

9

Answer

7

Explanation

Solution

Given : log3(x)+logx(25)logx(0.008)=163\log_{\sqrt3}(x)+\frac{\log_x(25)}{\log_x(0.008)}=\frac{16}{3}, which can be stated as :

⇒ 2 log3x + log0.0825 = 163\frac{16}{3}

⇒ 2 log3x + log81000\log_{\frac{8}{1000}}25 = 163\frac{16}{3}

⇒ 2 log3x + log53(5)2=163\log_{5^{-3}}(5)^2=\frac{16}{3}

⇒ 2 log3x - 23=163\frac{2}{3}=\frac{16}{3}

⇒ 2 log3x = 163+23\frac{16}{3}+\frac{2}{3}
⇒ 2 log3x = 6
⇒ log3x2 = 6
⇒ x2 = 36
Therefore, log3 (3.x2)
= log3 (3.36)
= log3 37
= 7

So, the correct option is (C): 7.