Solveeit Logo

Question

Quantitative Aptitude Question on Arithmetic Progression

For some positive and distinct real numbers x,yx ,y, and zz , if 1y+z\frac{1}{\sqrt{ y}+ \sqrt{z}} is the arithmetic mean of 1x+z\frac{1}{\sqrt{x}+ \sqrt{z}} and 1x+y\frac{1}{\sqrt{x} +\sqrt{y}} , then the relationship which will always hold true, is

A

y,xy ,x, and zz are in arithmetic progression

B

x,y\sqrt{x}, \sqrt{y} , and z\sqrt{z} are in arithmetic progression

C

x,yx ,y, and zz are in arithmetic progression

D

x,z\sqrt x, \sqrt z , and y\sqrt y are in arithmetic progression

Answer

y,xy ,x, and zz are in arithmetic progression

Explanation

Solution

Given
1y+z is\frac{1}{\sqrt{y}+\sqrt{z}}\ \text{is} the arithmetic mean of \frac{1}{\sqrt{x}+\sqrt{z}}\ \text{and}$$\frac{1}{\sqrt{x}+\sqrt{y}}
2y+z=1x+z+1x+y\frac{2}{\sqrt{y}+\sqrt{z}}=\frac{1}{\sqrt{x}+\sqrt{z}}+\frac{1}{\sqrt{x}+\sqrt{y}}

⇒$$2(\sqrt{x} + \sqrt{z})(\sqrt{x} + \sqrt{y}) = (\sqrt{y} + \sqrt{z})(\sqrt{x} + \sqrt{y} + \sqrt{x} + \sqrt{z})

⇒$$2(x + \sqrt{xy} + \sqrt{xz} + \sqrt{yz}) = 2\sqrt{xy} + y + \sqrt{yz} + 2\sqrt{xz} + \sqrt{yz} + z

 2x=y+z⇒\ 2x=y+z
Therefore, x is the arithmetic mean of y and z, y, x, and z are in A.P
The correct option is (A): y,xy ,x and zz are in arithmetic progression.