Solveeit Logo

Question

Question: For some function f(x) and g(x) which are differentiable $\forall x > 0$ satisfy the following condi...

For some function f(x) and g(x) which are differentiable x>0\forall x > 0 satisfy the following condition.

(i) (f(x)x)=x2ex2(\frac{f(x)}{x})' = x^2e^{-x^2}

(ii) g(x)=4e41xet2f(t)dtg(x) = \frac{4}{e^4} \int_1^x e^{t^2} \cdot f(t) dt

(iii) f(1)=1ef(1) = \frac{1}{e}

Find the value of 3e4(f(2)g(2))3e^4(f(2) - g(2)).

Answer

20

Explanation

Solution

We are given:

  1. (f(x)x)=x2ex2(\frac{f(x)}{x})' = x^2e^{-x^2}.
  2. g(x)=4e41xet2f(t)dtg(x) = \frac{4}{e^4}\int_1^x e^{t^2}f(t)\,dt.
  3. f(1)=1ef(1)=\frac{1}{e}.

Step 1. Write u(x)=f(x)xu(x)=\frac{f(x)}{x} so that u(x)=x2ex2u'(x)=x^2e^{-x^2}.

Integrate from 1 to xx: u(x)u(1)=1xt2et2dtu(x)-u(1)=\int_1^x t^2e^{-t^2}\,dt.

Since u(1)=f(1)=1eu(1)=f(1)=\tfrac{1}{e}, we get f(x)x=1e+1xt2et2dtf(x)=x(1e+1xt2et2dt)\frac{f(x)}{x} = \frac{1}{e}+\int_1^x t^2e^{-t^2}\,dt \quad\Longrightarrow\quad f(x)=x\left(\frac{1}{e}+\int_1^x t^2e^{-t^2}\,dt\right).

In particular, f(2)=2(1e+12t2et2dt)f(2)=2\left(\frac{1}{e}+\int_1^2 t^2e^{-t^2}\,dt\right).

Step 2. Express g(2)g(2): g(2)=4e412et2f(t)dtg(2)=\frac{4}{e^4}\int_1^2 e^{t^2}f(t)\,dt.

Note that with f(t)=t(1e+1ts2es2ds)f(t)=t\left(\frac{1}{e}+\int_1^t s^2e^{-s^2}\,ds\right), we have g(2)=4e412tet2(1e+1ts2es2ds)dtg(2)=\frac{4}{e^4}\int_1^2 t e^{t^2}\left(\frac{1}{e}+\int_1^t s^2e^{-s^2}\,ds\right)dt.

Let I=12t2et2dtI=\int_1^2 t^2e^{-t^2}\,dt, J(t)=1ts2es2dsJ(t)=\int_1^t s^2e^{-s^2}\,ds.

Then f(2)=2e+2If(2)=\frac{2}{e}+2I, and g(2)=4e4[1e12tet2dt+12tet2J(t)dt]g(2)=\frac{4}{e^4}\left[\frac{1}{e}\int_1^2 t e^{t^2}\,dt+\int_1^2 t e^{t^2}J(t)\,dt\right].

Step 3. Evaluate the simpler integral: Let A=12tet2dtA=\int_1^2 t e^{t^2}\,dt.

Use substitution u=t2u=t^2 so that du=2tdtdu=2t\,dt which gives: A=1214eudu=e4e2A=\frac{1}{2}\int_{1}^{4} e^u\,du=\frac{e^4-e}{2}.

Thus the first term in g(2)g(2) becomes: 4e41ee4e2=4(e4e)2e5=2(e4e)e5=2e2e4\frac{4}{e^4}\cdot\frac{1}{e}\cdot\frac{e^4-e}{2}=\frac{4(e^4-e)}{2e^5}=\frac{2(e^4-e)}{e^5}=\frac{2}{e}-\frac{2}{e^4}.

Step 4. Now denote B=12tet2J(t)dtB=\int_1^2 t e^{t^2}J(t)\,dt.

Note that ddt(et2J(t))=2tet2J(t)+t2et2et2=2tet2J(t)+t2\frac{d}{dt}\Bigl(e^{t^2}J(t)\Bigr)= 2te^{t^2}J(t)+ t^2e^{-t^2}\cdot e^{t^2} =2te^{t^2}J(t)+ t^2.

Thus, 2tet2J(t)=ddt(et2J(t))t22te^{t^2}J(t)=\frac{d}{dt}\Bigl(e^{t^2}J(t)\Bigr)-t^2.

Integrate from 1 to 2: 212tet2J(t)dt=[et2J(t)]1212t2dt2\int_1^2 t e^{t^2}J(t)\,dt = \Bigl[ e^{t^2}J(t) \Bigr]_1^2 -\int_1^2 t^2\,dt.

At t=1t=1, J(1)=11s2es2ds=0J(1)=\int_1^1 s^2e^{-s^2}\,ds=0. Also, 12t2dt=t3312=813=73\int_1^2 t^2dt=\left.\frac{t^3}{3}\right|_1^2=\frac{8-1}{3}=\frac{7}{3}.

Therefore, 2B=e4J(2)73B=e4J(2)2762B = e^4J(2)-\frac{7}{3}\quad \Longrightarrow\quad B=\frac{e^4J(2)}{2}-\frac{7}{6}.

But J(2)=12s2es2ds=IJ(2)=\int_1^2 s^2e^{-s^2}ds=I. So, B=e4I276B=\frac{e^4I}{2}-\frac{7}{6}.

Step 5. Now write g(2)=[2e2e4]+4e4B=2e2e4+4e4(e4I276)=2e2e4+2I286e4g(2)=\left[\frac{2}{e}-\frac{2}{e^4}\right]+\frac{4}{e^4}B =\frac{2}{e}-\frac{2}{e^4}+\frac{4}{e^4}\left(\frac{e^4I}{2}-\frac{7}{6}\right) =\frac{2}{e}-\frac{2}{e^4}+2I-\frac{28}{6e^4}.

Notice that 286e4=143e4\frac{28}{6e^4}=\frac{14}{3e^4}.

Thus, g(2)=2e+2I(2e4+143e4)=2e+2I(6+14)3e4=2e+2I203e4g(2)=\frac{2}{e}+2I-\left(\frac{2}{e^4}+\frac{14}{3e^4}\right) =\frac{2}{e}+2I-\frac{(6+14)}{3e^4} =\frac{2}{e}+2I-\frac{20}{3e^4}.

Recall that f(2)=2e+2If(2)=\frac{2}{e}+2I. Hence, f(2)g(2)=(2e+2I)(2e+2I203e4)=203e4f(2)-g(2)= \left(\frac{2}{e}+2I\right)-\left(\frac{2}{e}+2I-\frac{20}{3e^4}\right) =\frac{20}{3e^4}.

Step 6. Finally, the required value is: 3e4(f(2)g(2))=3e4(203e4)=203e^4\Bigl(f(2)-g(2)\Bigr)=3e^4\left(\frac{20}{3e^4}\right)=20.