Question
Question: For some function f(x) and g(x) which are differentiable $\forall x > 0$ satisfy the following condi...
For some function f(x) and g(x) which are differentiable ∀x>0 satisfy the following condition.
(i) (xf(x))′=x2e−x2
(ii) g(x)=e44∫1xet2⋅f(t)dt
(iii) f(1)=e1
Find the value of 3e4(f(2)−g(2)).
20
Solution
We are given:
- (xf(x))′=x2e−x2.
- g(x)=e44∫1xet2f(t)dt.
- f(1)=e1.
Step 1. Write u(x)=xf(x) so that u′(x)=x2e−x2.
Integrate from 1 to x: u(x)−u(1)=∫1xt2e−t2dt.
Since u(1)=f(1)=e1, we get xf(x)=e1+∫1xt2e−t2dt⟹f(x)=x(e1+∫1xt2e−t2dt).
In particular, f(2)=2(e1+∫12t2e−t2dt).
Step 2. Express g(2): g(2)=e44∫12et2f(t)dt.
Note that with f(t)=t(e1+∫1ts2e−s2ds), we have g(2)=e44∫12tet2(e1+∫1ts2e−s2ds)dt.
Let I=∫12t2e−t2dt, J(t)=∫1ts2e−s2ds.
Then f(2)=e2+2I, and g(2)=e44[e1∫12tet2dt+∫12tet2J(t)dt].
Step 3. Evaluate the simpler integral: Let A=∫12tet2dt.
Use substitution u=t2 so that du=2tdt which gives: A=21∫14eudu=2e4−e.
Thus the first term in g(2) becomes: e44⋅e1⋅2e4−e=2e54(e4−e)=e52(e4−e)=e2−e42.
Step 4. Now denote B=∫12tet2J(t)dt.
Note that dtd(et2J(t))=2tet2J(t)+t2e−t2⋅et2=2tet2J(t)+t2.
Thus, 2tet2J(t)=dtd(et2J(t))−t2.
Integrate from 1 to 2: 2∫12tet2J(t)dt=[et2J(t)]12−∫12t2dt.
At t=1, J(1)=∫11s2e−s2ds=0. Also, ∫12t2dt=3t312=38−1=37.
Therefore, 2B=e4J(2)−37⟹B=2e4J(2)−67.
But J(2)=∫12s2e−s2ds=I. So, B=2e4I−67.
Step 5. Now write g(2)=[e2−e42]+e44B=e2−e42+e44(2e4I−67)=e2−e42+2I−6e428.
Notice that 6e428=3e414.
Thus, g(2)=e2+2I−(e42+3e414)=e2+2I−3e4(6+14)=e2+2I−3e420.
Recall that f(2)=e2+2I. Hence, f(2)−g(2)=(e2+2I)−(e2+2I−3e420)=3e420.
Step 6. Finally, the required value is: 3e4(f(2)−g(2))=3e4(3e420)=20.