Solveeit Logo

Question

Question: For some function f(x) and g(x) which are differentiable $\forall x > 0$ satisfy the following condi...

For some function f(x) and g(x) which are differentiable x>0\forall x > 0 satisfy the following condition.

(i) (f(x)x)=x2ex2(\frac{f(x)}{x})' = x^2e^{-x^2}

(ii) g(x)=4e41xet2f(t)dtg(x) = \frac{4}{e^4}\int_{1}^{x} e^{t^2} \cdot f(t) dt

(iii) f(1)=1ef(1) = \frac{1}{e}

Find the value of 3e4(f(2)g(2))3e^4(f(2) - g(2)).

Answer

20

Explanation

Solution

We are given:

(f(x)x)=x2ex2,f(1)=1e,g(x)=4e41xet2f(t)dt.\left(\frac{f(x)}{x}\right)' = x^2 e^{-x^2},\quad f(1)=\frac{1}{e},\quad g(x)=\frac{4}{e^4}\int_{1}^{x}e^{t^2}f(t)\,dt.
  1. Find f(x):

Integrate (i) from 1 to xx:

f(x)xf(1)1=1xt2et2dt.\frac{f(x)}{x} - \frac{f(1)}{1} = \int_1^x t^2 e^{-t^2}\,dt.

Thus,

f(x)x=1e+1xt2et2dtf(x)=x[1e+1xt2et2dt].\frac{f(x)}{x} = \frac{1}{e} + \int_1^x t^2 e^{-t^2}\,dt \quad\Longrightarrow\quad f(x) = x\left[\frac{1}{e} + \int_1^x t^2 e^{-t^2}\,dt\right].

In particular,

f(2)=2[1e+I]whereI=12t2et2dt.f(2)= 2\left[\frac{1}{e} + I\right]\quad\text{where}\quad I=\int_1^2 t^2 e^{-t^2}\,dt.
  1. Express g(2):

We have

g(2)=4e412et2f(t)dt.g(2)=\frac{4}{e^4}\int_{1}^{2}e^{t^2}f(t)\,dt.

Write f(t)=t[1e+1tu2eu2du]f(t)= t\left[\frac{1}{e}+\int_1^t u^2 e^{-u^2}\,du\right]. Then

12et2f(t)dt=1e12tet2dt+12tet2(1tu2eu2du)dt.\int_1^2e^{t^2}f(t)\,dt = \frac{1}{e}\int_1^2 t e^{t^2}\,dt + \int_1^2 t e^{t^2}\left(\int_1^t u^2 e^{-u^2}\,du\right)dt.

Let

J1=1e12tet2dt,J2=12tet2(1tu2eu2du)dt.J_1 = \frac{1}{e}\int_1^2 t e^{t^2}\,dt,\quad J_2 = \int_1^2 t e^{t^2}\left(\int_1^t u^2 e^{-u^2}\,du\right)dt.
  • Evaluating J1J_1:

Let s=t2s=t^2 so that ds=2tdtds=2t\,dt; then

tet2dt=12et2.\int t e^{t^2}\,dt=\frac{1}{2}e^{t^2}.

Thus,

J1=1e12(e4e)=e4e2e.J_1=\frac{1}{e}\cdot\frac{1}{2}\left(e^{4}-e\right)=\frac{e^{4}-e}{2e}.
  • Evaluating J2J_2:

Change the order of integration. Write

J2=t=12[  tet2u=1tu2eu2du]dt=u=12u2eu2[t=u2tet2dt]du.J_2=\int_{t=1}^2 \left[\;t e^{t^2}\int_{u=1}^t u^2 e^{-u^2}\,du\right]dt =\int_{u=1}^{2}u^2 e^{-u^2}\left[\int_{t=u}^{2} t e^{t^2}\,dt\right]du.

But

t=u2tet2dt=12(e4eu2).\int_{t=u}^{2}t e^{t^2}\,dt =\frac{1}{2}\left(e^{4}-e^{u^2}\right).

Thus,

J2=12[e412u2eu2du12u2du].J_2=\frac{1}{2}\left[e^{4}\int_1^2u^2 e^{-u^2}\,du - \int_1^2 u^2\,du\right].

We note 12u2eu2du=I\int_1^2 u^2 e^{-u^2}\,du = I (the same II as before) and

12u2du=[u33]12=813=73.\int_1^2 u^2\,du = \left[\frac{u^3}{3}\right]_1^2 = \frac{8-1}{3}=\frac{7}{3}.

Thus,

J2=12(e4I73).J_2=\frac{1}{2}\left(e^{4}I - \frac{7}{3}\right).

So,

12et2f(t)dt=e4e2e+12(e4I73).\int_1^2 e^{t^2}f(t)\,dt = \frac{e^{4}-e}{2e} + \frac{1}{2}\left(e^{4}I - \frac{7}{3}\right).

Then,

g(2)=4e4[e4e2e+e4I276]=2(e4e)e5+2I143e4.g(2)=\frac{4}{e^4}\left[\frac{e^{4}-e}{2e} + \frac{e^{4}I}{2} - \frac{7}{6}\right] =\frac{2(e^{4}-e)}{e^5} + 2I - \frac{14}{3e^4}.

Notice that

2(e4e)e5=2e2e4.\frac{2(e^{4}-e)}{e^5}=\frac{2}{e}-\frac{2}{e^4}.

Thus,

g(2)=(2e2e4)+2I143e4.g(2)=\left(\frac{2}{e}-\frac{2}{e^4}\right)+2I-\frac{14}{3e^4}.
  1. Compute f(2)g(2)f(2)-g(2):

Recall f(2)=2e+2If(2)=\frac{2}{e}+2I. Therefore,

f(2)g(2)=(2e+2I)[2e2e4+2I143e4]=2e+2I2e+2e42I+143e4=2e4+143e4=6+143e4=203e4.\begin{aligned} f(2)-g(2) &= \left(\frac{2}{e}+2I\right) - \left[\frac{2}{e}-\frac{2}{e^4}+2I-\frac{14}{3e^4}\right]\\[1mm] &=\cancel{\frac{2}{e}}+2I-\cancel{\frac{2}{e}}+ \frac{2}{e^4}-2I+\frac{14}{3e^4}\\[1mm] &=\frac{2}{e^4}+\frac{14}{3e^4}=\frac{6+14}{3e^4}=\frac{20}{3e^4}. \end{aligned}

Thus,

3e4(f(2)g(2))=3e4203e4=20.3e^4(f(2)-g(2))=3e^4\cdot\frac{20}{3e^4}=20.