Question
Question: For some function f(x) and g(x) which are differentiable $\forall x > 0$ satisfy the following condi...
For some function f(x) and g(x) which are differentiable ∀x>0 satisfy the following condition.
(i) (xf(x))′=x2e−x2
(ii) g(x)=e44∫1xet2⋅f(t)dt
(iii) f(1)=e1
Find the value of 3e4(f(2)−g(2)).
Answer
20
Explanation
Solution
We are given:
(xf(x))′=x2e−x2,f(1)=e1,g(x)=e44∫1xet2f(t)dt.- Find f(x):
Integrate (i) from 1 to x:
xf(x)−1f(1)=∫1xt2e−t2dt.Thus,
xf(x)=e1+∫1xt2e−t2dt⟹f(x)=x[e1+∫1xt2e−t2dt].In particular,
f(2)=2[e1+I]whereI=∫12t2e−t2dt.- Express g(2):
We have
g(2)=e44∫12et2f(t)dt.Write f(t)=t[e1+∫1tu2e−u2du]. Then
∫12et2f(t)dt=e1∫12tet2dt+∫12tet2(∫1tu2e−u2du)dt.Let
J1=e1∫12tet2dt,J2=∫12tet2(∫1tu2e−u2du)dt.- Evaluating J1:
Let s=t2 so that ds=2tdt; then
∫tet2dt=21et2.Thus,
J1=e1⋅21(e4−e)=2ee4−e.- Evaluating J2:
Change the order of integration. Write
J2=∫t=12[tet2∫u=1tu2e−u2du]dt=∫u=12u2e−u2[∫t=u2tet2dt]du.But
∫t=u2tet2dt=21(e4−eu2).Thus,
J2=21[e4∫12u2e−u2du−∫12u2du].We note ∫12u2e−u2du=I (the same I as before) and
∫12u2du=[3u3]12=38−1=37.Thus,
J2=21(e4I−37).So,
∫12et2f(t)dt=2ee4−e+21(e4I−37).Then,
g(2)=e44[2ee4−e+2e4I−67]=e52(e4−e)+2I−3e414.Notice that
e52(e4−e)=e2−e42.Thus,
g(2)=(e2−e42)+2I−3e414.- Compute f(2)−g(2):
Recall f(2)=e2+2I. Therefore,
f(2)−g(2)=(e2+2I)−[e2−e42+2I−3e414]=e2+2I−e2+e42−2I+3e414=e42+3e414=3e46+14=3e420.Thus,
3e4(f(2)−g(2))=3e4⋅3e420=20.