Question
Mathematics Question on Derivatives
For some constants a and b, find the derivative of
(i) (x-a)(x-b) (ii) (ax2+b)2 (iii)x−bx−a
Answer
(i) Let f (x) = (x - a) (x + b)
f(x) = x2-(a+b)x+ab
∴ ƒ'(x) = dxd(x2 - (a + b)x + ab)
=dxd (x2) -(a+b)dxd(x) + dxd(ab)
On using theorem dxd(xn) = nxn-1, we obtain
f'(x)=2x-(a+b)+0=2x-a-b
(ii) Let f(x)=(ax2 +b)2
⇒f(x)=a2x4+2abx2+b2
∴ ƒ′(x) = (a2x4+2abx2+b2) = a2dxd(x4)+2abdxd(x2)+dxd(b2)
On using theorem dxd xn= nxn-1, we obtain
f'(x)=a2(4x3)+2ab (2x)+b2(0)
=4a2x3+4abx
=4ax(ax2+b)
(iii) Let f (x)=(x−b)(x−a)
⇒f'(x)=(x−b)(x−a)
By quotient rule,
(x−b)2(x−b)dxd(x−a)−(x−a)dxd(x−b)
= (x−b)2(x−b)(1)−(x−a)(1)
= (x−b)2x−b−x+a
=(x−b)2a−b