Solveeit Logo

Question

Mathematics Question on Derivatives

For some constants a and b, find the derivative of
(i) (x-a)(x-b) (ii) (ax2+b)2 (iii)xaxb\frac{x-a}{x-b}

Answer

(i) Let f (x) = (x - a) (x + b)
f(x) = x2-(a+b)x+ab
∴ ƒ'(x) = ddx\frac{d}{dx}(x2 - (a + b)x + ab)
=ddx\frac{d}{dx} (x2) -(a+b)ddx\frac{d}{dx}(x) + ddx\frac{d}{dx}(ab)
On using theorem ddx\frac{d}{dx}(xn) = nxn-1, we obtain
f'(x)=2x-(a+b)+0=2x-a-b
(ii) Let f(x)=(ax2 +b)2
⇒f(x)=a2x4+2abx2+b2
∴ ƒ′(x) = (a2x4+2abx2+b2) = a2ddx\frac{d}{dx}(x4)+2abddx\frac{d}{dx}(x2)+ddx\frac{d}{dx}(b2)
On using theorem ddx\frac{d}{dx} xn= nxn-1, we obtain
f'(x)=a2(4x3)+2ab (2x)+b2(0)
=4a2x3+4abx
=4ax(ax2+b)
(iii) Let f (x)=(xa)(xb)\frac{(x-a)}{(x-b)}
⇒f'(x)=(xa)(xb)\frac{(x-a)}{(x-b)}
By quotient rule,
(xb)ddx(xa)(xa)ddx(xb)(xb)2\frac{(x-b)\frac{d}{dx}(x-a)-(x-a)\frac{d}{dx}(x-b)}{(x-b)^2}
= (xb)(1)(xa)(1)(xb)2\frac{(x-b)(1)-(x-a)(1)}{(x-b)^2}
= xbx+a(xb)2\frac{x-b-x+a}{(x-b)^2}
=ab(xb)2\frac{a-b}{(x-b)^2}