Solveeit Logo

Question

Question: For silver, \[{\text{Cp}}\left( {{\text{J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}} \rig...

For silver, Cp(JK1mol1) = 23 + 0.01T{\text{Cp}}\left( {{\text{J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}} \right){\text{ = 23 + 0}}{\text{.01T}} . If the temperature (T) of 3 moles{\text{3 moles}} of silver is raised from 300 K300{\text{ K}} to 1000 K1000{\text{ K}} at 1 atm1{\text{ atm}} pressure, the value of ΔH\Delta H will be close to:
A 21 kJ21{\text{ kJ}}
B 16 kJ16{\text{ kJ}}
C 13 kJ13{\text{ kJ}}
D 62 kJ62{\text{ kJ}}

Explanation

Solution

We can begin by writing an expression to obtain ΔH\Delta H from the heat capacity
ΔH=nT1T2Cp,mdT\Delta H = n\int\limits_{{T_1}}^{{T_2}} {{C_{p,m}}dT}
Then, you should substitute values in the above expression:
In the next step, you integrate the above expression within the limits of the given temperature range, and further solve the expression to obtain ΔH\Delta Hvalue.

Complete Step by step answer: The enthalpy change and the heat capacity are mathematically related to each other.
Write an expression to obtain ΔH\Delta H from the heat capacity
ΔH=nT1T2Cp,mdT\Delta H = n\int\limits_{{T_1}}^{{T_2}} {{C_{p,m}}dT}
Substitute the number of moles as 3, the initial and final temperatures as 300 and 1000 and the heat capacity of silver Cp(JK1mol1){\text{Cp}}\left( {{\text{J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}} \right) as  23 + 0.01T{\text{ 23 + 0}}{\text{.01T}} in the above expression:
ΔH=3×3001000(23 + 0.01T)dT\Delta H = 3 \times \int\limits_{300}^{1000} {\left( {{\text{23 + 0}}{\text{.01T}}} \right)dT}
Integrate the above expression

ΔH=3×[23(T)T1T2+0.012(T2)T1T2] ΔH=3×[23(T2  T1)+0.012(T22  T12)] ΔH=3×[23(1000  300)+0.012(10002  3002)]  \Rightarrow \Delta H = 3 \times \left[ {23\left( {\text{T}} \right)_{{{\text{T}}_1}}^{{{\text{T}}_2}} + \dfrac{{0.01}}{2}\left( {{{\text{T}}^2}} \right)_{{{\text{T}}_1}}^{{{\text{T}}_2}}} \right] \\\ \Rightarrow \Delta H = 3 \times \left[ {23\left( {{{\text{T}}_2}{\text{ }} - {\text{ }}{{\text{T}}_1}} \right) + \dfrac{{0.01}}{2}\left( {{{\text{T}}_2}^2{\text{ }} - {\text{ }}{{\text{T}}_1}^2} \right)} \right] \\\ \Rightarrow \Delta H = 3 \times \left[ {23\left( {{\text{1000 }} - {\text{ 300}}} \right) + \dfrac{{0.01}}{2}\left( {{\text{100}}{{\text{0}}^2}{\text{ }} - {\text{ 30}}{{\text{0}}^2}} \right)} \right] \\\

Further solve the above expression

ΔH=3×[23(700)+0.012(1,000,000  90,000)] ΔH=3×[16100+0.012(910,000 )] ΔH=3×[16100+91002] ΔH=3×[16100+4550]  \Delta H = 3 \times \left[ {23\left( {{\text{700}}} \right) + \dfrac{{0.01}}{2}\left( {{\text{1,000,000 }} - {\text{ 90,000}}} \right)} \right] \\\ \Rightarrow \Delta H = 3 \times \left[ {16100 + \dfrac{{0.01}}{2}\left( {{\text{910,000 }}} \right)} \right] \\\ \Rightarrow \Delta H = 3 \times \left[ {16100 + \dfrac{{9100}}{2}} \right] \\\ \Rightarrow \Delta H = 3 \times \left[ {16100 + 4550} \right] \\\

Further solve the above expression

ΔH=3×20650 ΔH=61950 kJ ΔH62 kJ  \Delta H = 3 \times 20650 \\\ \Rightarrow \Delta H = 61950{\text{ kJ}} \\\ \Rightarrow \Delta H \simeq 62{\text{ kJ}} \\\

Hence, the value of the enthalpy change ΔH\Delta H for the reaction is 62 kJ62{\text{ kJ}} .

Hence, the option (D) is the correct option.

Note: Students should keep in mind some procedures such that, solve a definite integral according to the following formula.

if(a + bx)dx=[a(x)if+b(x2)if] if(a + bx)dx=[a(xfxi)+b(xf2xi2)]  \int\limits_i^f {\left( {{\text{a + bx}}} \right)d{\text{x}}} = \left[ {a\left( {\text{x}} \right)_i^f + b\left( {{{\text{x}}^2}} \right)_i^f} \right] \\\ \int\limits_i^f {\left( {{\text{a + bx}}} \right)d{\text{x}}} = \left[ {a\left( {{{\text{x}}_f} - {{\text{x}}_i}} \right) + b\left( {{{\text{x}}_f}^2 - {{\text{x}}_i}^2} \right)} \right] \\\

Here, you have integrated the function (a + bx)\left( {{\text{a + bx}}} \right) between the limits i and f . i and f represents initial and final values for the variable x. a and b are constants