Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

For real xx, the greatest value of x2+2x+42x2+4x+9\frac{x^{2}+2x+4}{2x^{2}+4x+9} is

A

11

B

1-1

C

12\frac{1}{2}

D

14\frac{1}{4}

Answer

12\frac{1}{2}

Explanation

Solution

Let y=x2+2x+42x2+4x+9 y=\frac{x^{2}+2 x+4}{2 x^{2}+4 x+9}
2x2y+4xy+9y=x2+2x+4\Rightarrow 2 x^{2} y+4 x y+9 y=x^{2}+2 x+4
(2y1)x2+(4y2)x+9y4=0\Rightarrow(2 y-1) x^{2}+(4 y-2) x+9 y-4=0
x=(4y2)±4y2)24(2y1)(9y4)2(2y1)\Rightarrow x=\frac{-(4 y-2) \pm \sqrt{-4 y-2)^{2}{-4(2 y-1)(9 y-4)}}}{2(2 y-1)}
Since, xx is real number.
(4y2)24(2y1)(9y4)0\therefore (4 y-2)^{2}-4(2 y-1)(9 y-4) \geq 0
4(2y1)24(2y1)(9y4)0\Rightarrow 4(2 y-1)^{2}-4(2 y-1)(9 y-4) \geq 0
4(2y1)(2y19y+4)0\Rightarrow 4(2 y-1)(2 y-1-9 y+4) \geq 0
4(2y1)(37y)0\Rightarrow 4(2 y-1)(3-7 y) \geq 0
(2y1)(7y3)0\Rightarrow (2 y-1)(7 y-3) \leq 0