Solveeit Logo

Question

Question: For real x, the greatest value of \(\dfrac{{{x^2} + 2x + 4}}{{2{x^2} + 4x + 9}}\) is A. 1 B. -1 ...

For real x, the greatest value of x2+2x+42x2+4x+9\dfrac{{{x^2} + 2x + 4}}{{2{x^2} + 4x + 9}} is
A. 1
B. -1
C. 12\dfrac{1}{2}
D. 14\dfrac{1}{4}

Explanation

Solution

Hint- Convert the equation to quadratic form by equating the given equation to y. Apply a quadratic formula to find out the answer. (Be careful with calculations)

Complete step by step answer:

Now we know that for this we put the value equal of ‘y’
y=x2+2x+42x2+4x+9\Rightarrow y = \dfrac{{{x^2} + 2x + 4}}{{2{x^2} + 4x + 9}}
y(2x2+4x+9)=x2+2x+4\Rightarrow y\left( {2{x^2} + 4x + 9} \right) = {x^2} + 2x + 4
2x2y+4xy+9y=x2+2x+4\Rightarrow 2{x^2}y + 4xy + 9y = {x^2} + 2x + 4
2x2yx2+4xy2x+9y4=0 x2(2y1)+2x(2y1)+9y4=0  \Rightarrow 2{x^2}y - {x^2} + 4xy - 2x + 9y - 4 = 0 \\\ \Rightarrow {x^2}\left( {2y - 1} \right) + 2x\left( {2y - 1} \right) + 9y - 4 = 0 \\\
Now, as we know that in x2(2y1){x^2}\left( {2y - 1} \right) forms a quadratic equation so
D=>0D = > 0
b24ac=>0{b^2} - 4ac = > 0
Now, putting values
[2(2y1)]24(9y4)(2y1)=>0 4(2y1)24(9y4)(2y1)=>0  \Rightarrow {\left[ {2\left( {2y - 1} \right)} \right]^2} - 4\left( {9y - 4} \right)\left( {2y - 1} \right) = > 0 \\\ \Rightarrow 4{\left( {2y - 1} \right)^2} - 4\left( {9y - 4} \right)\left( {2y - 1} \right) = > 0 \\\
4(2y1)[(2y1)(9y4)]=>0 4(2y1)(2y19y+4)=>0  \Rightarrow 4\left( {2y - 1} \right)\left[ {\left( {2y - 1} \right) - \left( {9y - 4} \right)} \right] = > 0 \\\ \Rightarrow 4\left( {2y - 1} \right)\left( {2y - 1 - 9y + 4} \right) = > 0 \\\
4(2y1)(37y)=>0 (2y1)()(7y3)=>0 (2y1)(7y3)<=0  \Rightarrow 4\left( {2y - 1} \right)\left( {3 - 7y} \right) = > 0 \\\ \Rightarrow \left( {2y - 1} \right)\left( - \right)\left( {7y - 3} \right) = > 0 \\\ \Rightarrow \left( {2y - 1} \right)\left( {7y - 3} \right) < = 0 \\\
For,(2y1)\left( {2y - 1} \right)
y=12y = \dfrac{1}{2}
For, (7y3)\left( {7y - 3} \right)
y=37y = \dfrac{3}{7}
(Planting the above mentioned values on number line we get,)
37y12\dfrac{3}{7} \leqslant y \leqslant \dfrac{1}{2} (From here we can say that 12\dfrac{1}{2} is the greatest value.)
Therefore, 12\dfrac{1}{2} is our answer.
Hence, (C) is the correct option.

Note- The discriminant is the part of the quadratic formula underneath the square root symbol: b²-4ac. The discriminant tells us whether there are two solutions, one solution, or no solutions.