Solveeit Logo

Question

Question: For real values of x, range of the function \(y = \frac{1}{2 - \sin 3x}\) is...

For real values of x, range of the function y=12sin3xy = \frac{1}{2 - \sin 3x} is

A

13y1\frac{1}{3} \leq y \leq 1

B

13y<1- \frac{1}{3} \leq y < 1

C

13>y>1- \frac{1}{3} > y > - 1

D

13>y>1\frac{1}{3} > y > 1

Answer

13y1\frac{1}{3} \leq y \leq 1

Explanation

Solution

y=12sin3x\because y = \frac{1}{2 - \sin 3x}, 2sin3x=1y\therefore 2 - \sin 3x = \frac{1}{y} sin3x=21y\Rightarrow \sin 3x = 2 - \frac{1}{y}

Now since,

$$$\Rightarrow 1 \leq \frac{1}{y} \leq 3 \Rightarrow \frac{1}{3} \leq y \leq 1$.