Solveeit Logo

Question

Mathematics Question on Operations on Real Numbers

For real number a , b (a > b > 0), let
\text{{Area}} \left\\{ (x, y) : x^2 + y^2 \leq a^2 \text{{ and }} \frac{x^2}{a^2} + \frac{y^2}{b^2} \geq 1 \right\\} = 30\pi
and
\text{{Area}} \left\\{ (x, y) : x^2 + y^2 \geq b^2 \text{{ and }} \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \right\\} = 18\pi
Then the value of (ab)2 is equal to _____.

Answer

The correct answer is 12
x2+y2a2x²+y² ≤ a² is interior of circle andx2a2+y2b21\frac{x²}{a²} + \frac{y²}{b²} ≥ 1 is exterior of ellipse

Fig.

∴ Area = πa² - πab = 30π .... (1)
Similarly x2+y2b2x²+y² ≥ b² and x2a2+y2b21\frac{x²}{a²} + \frac{y²}{b²} ≤ 1 gives
πab - πb² = 30π .... (2)
Comparing (1) and (2) , ab=53\frac{a}{b}=\frac{5}{3} and a=5b3⇒ a=\frac{5b}{3}
π.25b29π.5b23=30π⇒ π.\frac{25b²}{9} - π . \frac{5b²}{3} = 30π
(25953)b2=30⇒ ( \frac{25}{9} - \frac{5}{3} )b² = 30
109b2=30b2=27⇒ \frac{10}{9} b² = 30 ⇒ b² = 27
and a2=259.27=75a² = \frac{25}{9} . 27 = 75
=(ab)2= (a-b)²
=(5333)2= (5\sqrt3 - 3\sqrt3)²
=3.4= 3.4
= 12