Solveeit Logo

Question

Question: For positive numbers x, y , z the numerical value of the determinant \(\left| \begin{matrix} 1 & \...

For positive numbers x, y , z the numerical value of the

determinant

1logxylogxzlogyx1logyzlogzxlogzy1\left| \begin{matrix} 1 & \log_{x}y & \log_{x}z \\ \log_{y}x & 1 & \log_{y}z \\ \log_{z}x & \log_{z}y & 1 \end{matrix} \right|is -

A

0

B

1

C

2

D

None of these

Answer

0

Explanation

Solution

1logylogxlogzlogxlogxlogy1logzlogylogxlogzlogylogz1\left| \begin{matrix} 1 & \frac{\log y}{\log x} & \frac{\log z}{\log x} \\ \frac{\log x}{\log y} & 1 & \frac{\log z}{\log y} \\ \frac{\log x}{\log z} & \frac{\log y}{\log z} & 1 \end{matrix} \right|

= 1logxlogylogz\frac { 1 } { \log x \log y \log z } logxlogylogzlogxlogylogzlogxlogylogz\left| \begin{matrix} \log x & \log y & \log z \\ \log x & \log y & \log z \\ \log x & \log y & \log z \end{matrix} \right| = 0