Solveeit Logo

Question

Question: For positive integers n<sub>1</sub>, n<sub>2</sub> the value of the expression \((1 + i)^{n_{1}} + ...

For positive integers n1, n2 the value of the expression

(1+i)n1+(1+i3)n1+(1+i5)n2+(1+i7)n2(1 + i)^{n_{1}} + \left( 1 + i^{3} \right)^{n_{1}} + \left( 1 + i^{5} \right)^{n_{2}} + \left( 1 + i^{7} \right)^{n_{2}}, where i = 1\sqrt{- 1}, is a real number if and only if

A

n1 = n2 + 1

B

n1 = n2

C

n1 = n2 – 1

D

All values of n1 and n2

Answer

All values of n1 and n2

Explanation

Solution

Sol.(1+i)n1+(1+i3)n1+(1+i5)n2+(1+i7)n2(1 + i)^{n_{1}} + \left( 1 + i^{3} \right)^{n_{1}} + \left( 1 + i^{5} \right)^{n_{2}} + \left( 1 + i^{7} \right)^{n_{2}}= (1+i)n1+(1i)n1+(1+i)n2+(1i)n2(1 + i)^{n_{1}} + (1 - i)^{n_{1}} + (1 + i)^{n_{2}} + (1 - i)^{n_{2}}= real number for all n1 and n2