Solveeit Logo

Question

Question: For positive integers n, p and q, define $I_n = \int_{0}^{\infty} \frac{1}{(e^x + e^{-x})^n} dx$...

For positive integers n, p and q, define

In=01(ex+ex)ndxI_n = \int_{0}^{\infty} \frac{1}{(e^x + e^{-x})^n} dx

Answer

πΓ(n/2)2n+1Γ((n+1)/2)\frac{\sqrt{\pi} \Gamma(n/2)}{2^{n+1} \Gamma((n+1)/2)}

Explanation

Solution

The integral is given by In=01(ex+ex)ndxI_n = \int_{0}^{\infty} \frac{1}{(e^x + e^{-x})^n} dx. We know that ex+ex=2cosh(x)e^x + e^{-x} = 2 \cosh(x). So, In=01(2cosh(x))ndx=12n01coshn(x)dx=12n0sechn(x)dxI_n = \int_{0}^{\infty} \frac{1}{(2 \cosh(x))^n} dx = \frac{1}{2^n} \int_{0}^{\infty} \frac{1}{\cosh^n(x)} dx = \frac{1}{2^n} \int_{0}^{\infty} \text{sech}^n(x) dx.

Let's evaluate the integral Jn=0sechn(x)dxJ_n = \int_{0}^{\infty} \text{sech}^n(x) dx. Use the substitution u=tanh(x)u = \tanh(x). Then du=sech2(x)dxdu = \text{sech}^2(x) dx. Also, sech2(x)=1tanh2(x)=1u2\text{sech}^2(x) = 1 - \tanh^2(x) = 1 - u^2. The limits of integration change from x=0x=0 to u=tanh(0)=0u=\tanh(0)=0 and from xx \to \infty to u=tanh()=1u=\tanh(\infty)=1. Jn=0sechn2(x)sech2(x)dx=01(1tanh2(x))(n2)/2du=01(1u2)(n2)/2duJ_n = \int_{0}^{\infty} \text{sech}^{n-2}(x) \text{sech}^2(x) dx = \int_{0}^{1} (1 - \tanh^2(x))^{(n-2)/2} du = \int_{0}^{1} (1 - u^2)^{(n-2)/2} du.

Now, let's use the substitution u=sinθu = \sin \theta. Then du=cosθdθdu = \cos \theta d\theta. The limits of integration change from u=0u=0 to sinθ=0    θ=0\sin \theta = 0 \implies \theta = 0 and from u=1u=1 to sinθ=1    θ=π/2\sin \theta = 1 \implies \theta = \pi/2. The integral becomes: 0π/2(1sin2θ)(n2)/2cosθdθ=0π/2(cos2θ)(n2)/2cosθdθ=0π/2cosn2θcosθdθ=0π/2cosn1θdθ\int_{0}^{\pi/2} (1 - \sin^2 \theta)^{(n-2)/2} \cos \theta d\theta = \int_{0}^{\pi/2} (\cos^2 \theta)^{(n-2)/2} \cos \theta d\theta = \int_{0}^{\pi/2} \cos^{n-2} \theta \cos \theta d\theta = \int_{0}^{\pi/2} \cos^{n-1} \theta d\theta.

This is a standard integral, a form of Wallis' integral. Let Km=0π/2cosmθdθK_m = \int_{0}^{\pi/2} \cos^m \theta d\theta. Km={m1mm3m212π2if m is evenm1mm3m223if m is oddK_m = \begin{cases} \frac{m-1}{m} \frac{m-3}{m-2} \cdots \frac{1}{2} \frac{\pi}{2} & \text{if m is even} \\ \frac{m-1}{m} \frac{m-3}{m-2} \cdots \frac{2}{3} & \text{if m is odd} \end{cases}. In our case, m=n1m = n-1.

So, Jn=0π/2cosn1θdθJ_n = \int_{0}^{\pi/2} \cos^{n-1} \theta d\theta.

Case 1: nn is even. Let n=2kn = 2k for some positive integer kk. Then m=n1=2k1m = n-1 = 2k-1 (odd). J2k=0π/2cos2k1θdθ=2k22k12k42k323J_{2k} = \int_{0}^{\pi/2} \cos^{2k-1} \theta d\theta = \frac{2k-2}{2k-1} \frac{2k-4}{2k-3} \cdots \frac{2}{3}. This can be written using double factorials: J2k=(2k2)!!(2k1)!!J_{2k} = \frac{(2k-2)!!}{(2k-1)!!}. Then I2k=122kJ2k=122k(2k2)!!(2k1)!!I_{2k} = \frac{1}{2^{2k}} J_{2k} = \frac{1}{2^{2k}} \frac{(2k-2)!!}{(2k-1)!!}.

Case 2: nn is odd. Let n=2k+1n = 2k+1 for some non-negative integer kk. Then m=n1=2km = n-1 = 2k (even). J2k+1=0π/2cos2kθdθ=2k12k2k32k212π2J_{2k+1} = \int_{0}^{\pi/2} \cos^{2k} \theta d\theta = \frac{2k-1}{2k} \frac{2k-3}{2k-2} \cdots \frac{1}{2} \frac{\pi}{2}. This can be written using double factorials: J2k+1=(2k1)!!(2k)!!π2=(2k1)!!2kk!π2J_{2k+1} = \frac{(2k-1)!!}{(2k)!!} \frac{\pi}{2} = \frac{(2k-1)!!}{2^k k!} \frac{\pi}{2}. Then I2k+1=122k+1J2k+1=122k+1(2k1)!!(2k)!!π2=(2k1)!!22k+12kk!π2=(2k1)!!23k+1k!π2I_{2k+1} = \frac{1}{2^{2k+1}} J_{2k+1} = \frac{1}{2^{2k+1}} \frac{(2k-1)!!}{(2k)!!} \frac{\pi}{2} = \frac{(2k-1)!!}{2^{2k+1} 2^k k!} \frac{\pi}{2} = \frac{(2k-1)!!}{2^{3k+1} k!} \frac{\pi}{2}. A more common way to express this is using Gamma functions, which covers both even and odd cases. Jn=0π/2cosn1θdθJ_n = \int_{0}^{\pi/2} \cos^{n-1} \theta d\theta. Using the relation between Wallis' integral and the Gamma function: 0π/2sinpxcosqxdx=Γ(p+12)Γ(q+12)2Γ(p+q+22)\int_{0}^{\pi/2} \sin^p x \cos^q x dx = \frac{\Gamma(\frac{p+1}{2}) \Gamma(\frac{q+1}{2})}{2 \Gamma(\frac{p+q+2}{2})}. Here, p=0p=0 and q=n1q=n-1. Jn=Γ(0+12)Γ((n1)+12)2Γ(0+(n1)+22)=Γ(1/2)Γ(n/2)2Γ((n+1)/2)J_n = \frac{\Gamma(\frac{0+1}{2}) \Gamma(\frac{(n-1)+1}{2})}{2 \Gamma(\frac{0+(n-1)+2}{2})} = \frac{\Gamma(1/2) \Gamma(n/2)}{2 \Gamma((n+1)/2)}. Since Γ(1/2)=π\Gamma(1/2) = \sqrt{\pi}, Jn=πΓ(n/2)2Γ((n+1)/2)J_n = \frac{\sqrt{\pi} \Gamma(n/2)}{2 \Gamma((n+1)/2)}.

Finally, In=12nJn=12nπΓ(n/2)2Γ((n+1)/2)=πΓ(n/2)2n+1Γ((n+1)/2)I_n = \frac{1}{2^n} J_n = \frac{1}{2^n} \frac{\sqrt{\pi} \Gamma(n/2)}{2 \Gamma((n+1)/2)} = \frac{\sqrt{\pi} \Gamma(n/2)}{2^{n+1} \Gamma((n+1)/2)}.

This formula gives the value of InI_n for any positive integer nn.