Solveeit Logo

Question

Mathematics Question on Limits

For positive integer nn, define f(n)=n+16+5n3n24n+3n2+32+n3n28n+3n2+483n3n212n+3n2++25n7n27n2f(n)=n+\frac{16+5 n-3 n^2}{4 n+3 n^2}+\frac{32+n-3 n^2}{8 n+3 n^2}+\frac{48-3 n-3 n^2}{12 n+3 n^2}+\ldots+\frac{25 n-7 n^2}{7 n^2}.
Then, the value of limnf(n)\displaystyle\lim _{n \rightarrow \infty} f(n) is equal to

A

3+43loge73+\frac{4}{3} \log _e 7

B

434loge(73)4-\frac{3}{4} \log _e\left(\frac{7}{3}\right)

C

443loge(73)4-\frac{4}{3} \log _e\left(\frac{7}{3}\right)

D

3+34loge73+\frac{3}{4} \log _{ e } 7

Answer

434loge(73)4-\frac{3}{4} \log _e\left(\frac{7}{3}\right)

Explanation

Solution

The correct option is (B): 434loge(73)4-\frac{3}{4} \log _e\left(\frac{7}{3}\right)