Solveeit Logo

Question

Physics Question on Electromagnetic waves

For plane electromagnetic waves propagating in the zz direction, which one of the following combination gives the correct possible direction for E\vec{E} and B\vec{B} field respectively ?

A

(i^+2j^)\left(\hat{i}+2\hat{j}\right) and (2i^j^)\left(2\hat{i}-\hat{j}\right)

B

(2i^3j^)\left(\hat{-2i}-3\hat{j}\right) and (3i^2j^)\left(3\hat{i}-\hat{2j}\right)

C

(2i^+3j^)\left(\hat{2i}+3\hat{j}\right) and (i^2j^)\left(\hat{i}-\hat{2j}\right)

D

(3i^+4j^)\left(\hat{3i}+4\hat{j}\right) and (4i^3j^)\left(4\hat{i}-\hat{3j}\right)

Answer

(2i^3j^)\left(\hat{-2i}-3\hat{j}\right) and (3i^2j^)\left(3\hat{i}-\hat{2j}\right)

Explanation

Solution

E\vec{E} and B\vec{B} are mutually perpendicular
E×B=C=Ck^\vec{E} \times \vec{B}=\vec{C}=C \hat{k}
(2i^3j^)(3i^2j^)=6+6=0\Rightarrow(-2 \hat{i}-3 \hat{j}) \cdot(3 \hat{i}-2 \hat{j})=-6+6=0
(2i^3j^)×(3i^2j^)=(6+9)k^=15k^\Rightarrow(-2 \hat{i}-3 \hat{j}) \times(3 \hat{i}-2 \hat{j})=(6+9) \hat{k}=15 \hat{k}