Solveeit Logo

Question

Real Analysis Question on Sequences and Series

For p, q, r ∈ ℝ, r ≠ 0 and n ∈ N\N, let
an=pnnq(nn+2)n2a_n=p^n n^q(\frac{n}{n+2})^{n^2} and bn=nnn!rn(n+2n)b_n=\frac{n^n}{n!r^n}(\sqrt{\frac{n+2}{n}}).
Then, which one of the following statements is TRUE ?

A

If 1 < p < e2 and q > 1, then n=1an\sum\limits_{n=1}^{\infin}a_n is convergent

B

If e2 < p < e4 and q > 1, then n=1an\sum\limits_{n=1}^{\infin}a_n is convergent

C

If 1 < r < e, then n=1bn\sum\limits^{\infin}_{n=1}b_n is convergent

D

If 1e\frac{1}{e} < r < e, then n=1bn\sum\limits^{\infin}_{n=1}b_n is convergent

Answer

If 1 < p < e2 and q > 1, then n=1an\sum\limits_{n=1}^{\infin}a_n is convergent

Explanation

Solution

The correct option is (A) : If 1 < p < e2 and q > 1, then n=1an\sum\limits_{n=1}^{\infin}a_n is convergent.