Question
Mathematics Question on Quadratic Equations
For p, q, ∈ R, consider the real valued function f(x)=(x–p)2–q, x ∈ R and q > 0, Let a1,a2,a3 and a4 be in an arithmetic progression with mean p and positive common difference. If |f(ai)| = 500 for all i = 1, 2, 3, 4, then the absolute difference between the roots of f(x) = 0 is
Answer
f(x)=0⇒(x−p)2−q=0
Roots are p+q, p−q absolute difference between roots 2q.
Now, ∣f(a_i)$$∣=500
Let a1,a2,a3,a4area1a+d,a+2d,a+3d
∣f(a4)∣=500
∣(a1−p)2−q∣=500
⇒ (a1−p)2−q=500
⇒ 49d2−q=500....(1)
and ∣f(a1)∣2=∣f(a2)∣2
((a1−p)2−q)2=((a2−p)2−q)2
⇒ ((a1−p)2−(a2−p)2)((a1−p)2−q+(a2−p)2−q)=0
⇒ 49d2−q+4d2−q=0
2q=410d2 ⇒ q=45d2
⇒ d2=54q
From equation (1) 49⋅54⋅q−q=500
54q=500
and 2q=2×250=50