Solveeit Logo

Question

Mathematics Question on Quadratic Equations

For p, q, ∈ R, consider the real valued function f(x)=(xp)2qf(x) = (x – p)^2 – q, x ∈ R and q > 0, Let a1,a2,a3a_1, a_2, a_3 and a4a_4 be in an arithmetic progression with mean p and positive common difference. If |f(ai)| = 500 for all i = 1, 2, 3, 4, then the absolute difference between the roots of f(x) = 0 is

Answer

f(x)=0(xp)2q=0f(x)=0 ⇒ (x−p) ^2−q=0

Roots are p+qp+\sqrt q, pqp− \sqrt q absolute difference between roots 2q2\sqrt q.
Now, ∣f(a_i)$$∣=500

Let a1,a2,a3,a4  are  a1a+d,a+2d,a+3da_1,a_2,a_3,a_4 \space are \space a_1a+d,a+2d,a+3d
f(a4)=500∣f(a_4)∣=500

(a1p)2q=500∣(a_1−p)^2−q ∣=500

(a1p)2q=500(a_1−p)^2−q=500
94d2q=500....(1)\frac{9}{4}d^2−q=500 ....(1)

and f(a1)2=f(a2)2∣f(a_1 )∣^2=∣f(a_2)∣ ^2

((a1p)2q)2=((a2p)2q)2((a_1−p)^2−q)^2=((a_2−p)^2−q)^2

((a1p)2(a2p)2)((a1p)2q+(a2p)2q)=0((a_1​−p)^2−(a_2−p)^2)((a_1−p)^2−q+(a_2−p)^2−q)=0
94d2q+d24q=0\frac{9}{4}d^2−q+ \frac{d^2}{4}−q=0
2q=10d242q= \frac{10d^2}{4}q=5d24q= \frac{5d^2}{4}

d2=4q5d^2= \frac{4q}{5}
​From equation (1) 944q5q=500\frac{9}{4}⋅ \frac{4⋅q}{5}−q=500

4q5=500\frac{4q}{5}=500

and 2q=2×502=502\sqrt q=2× \frac{50}{2}=50