Solveeit Logo

Question

Question: For $p, n \in N$, let $f(x) = 1-x^p$ and $g_n(x) = \frac{n}{\frac{1}{f(x)}+\frac{1}{f(2x)}+....+\fra...

For p,nNp, n \in N, let f(x)=1xpf(x) = 1-x^p and gn(x)=n1f(x)+1f(2x)+....+1f(nx)g_n(x) = \frac{n}{\frac{1}{f(x)}+\frac{1}{f(2x)}+....+\frac{1}{f(nx)}}. Find the value of limx01gn(x)xp\lim_{x \to 0} \frac{1-g_n(x)}{x^p} at n=5n=5 and p=3p=3.

Answer

45

Explanation

Solution

To find the value of the limit limx01gn(x)xp\lim_{x \to 0} \frac{1-g_n(x)}{x^p}, where f(x)=1xpf(x) = 1-x^p and gn(x)=n1f(x)+1f(2x)+....+1f(nx)g_n(x) = \frac{n}{\frac{1}{f(x)}+\frac{1}{f(2x)}+....+\frac{1}{f(nx)}}, we will use the Taylor series expansion.

First, let's express gn(x)g_n(x) in terms of f(kx)f(kx): gn(x)=nk=1n1f(kx)g_n(x) = \frac{n}{\sum_{k=1}^{n} \frac{1}{f(kx)}}

Substitute f(kx)=1(kx)p=1kpxpf(kx) = 1-(kx)^p = 1-k^p x^p: gn(x)=nk=1n11kpxpg_n(x) = \frac{n}{\sum_{k=1}^{n} \frac{1}{1-k^p x^p}}

We know the geometric series expansion for 11y\frac{1}{1-y} for small yy: 11y=1+y+y2+O(y3)\frac{1}{1-y} = 1+y+y^2+O(y^3)

In our case, y=kpxpy = k^p x^p. As x0x \to 0, kpxp0k^p x^p \to 0. So, we can write: 11kpxp=1+kpxp+(kpxp)2+O(x3p)=1+kpxp+k2px2p+O(x3p)\frac{1}{1-k^p x^p} = 1+k^p x^p + (k^p x^p)^2 + O(x^{3p}) = 1+k^p x^p + k^{2p} x^{2p} + O(x^{3p})

Let D(x)D(x) be the denominator of gn(x)g_n(x): D(x)=k=1n11kpxp=k=1n(1+kpxp+k2px2p+O(x3p))D(x) = \sum_{k=1}^{n} \frac{1}{1-k^p x^p} = \sum_{k=1}^{n} (1+k^p x^p + k^{2p} x^{2p} + O(x^{3p})) D(x)=k=1n1+xpk=1nkp+x2pk=1nk2p+O(x3p)k=1n1D(x) = \sum_{k=1}^{n} 1 + x^p \sum_{k=1}^{n} k^p + x^{2p} \sum_{k=1}^{n} k^{2p} + O(x^{3p}) \sum_{k=1}^{n} 1 Let S1=k=1nkpS_1 = \sum_{k=1}^{n} k^p and S2=k=1nk2pS_2 = \sum_{k=1}^{n} k^{2p}. D(x)=n+S1xp+S2x2p+O(x3p)D(x) = n + S_1 x^p + S_2 x^{2p} + O(x^{3p})

Now, substitute D(x)D(x) back into gn(x)g_n(x): gn(x)=nn+S1xp+S2x2p+O(x3p)g_n(x) = \frac{n}{n + S_1 x^p + S_2 x^{2p} + O(x^{3p})}

Next, we calculate 1gn(x)1-g_n(x): 1gn(x)=1nn+S1xp+S2x2p+O(x3p)1-g_n(x) = 1 - \frac{n}{n + S_1 x^p + S_2 x^{2p} + O(x^{3p})} 1gn(x)=(n+S1xp+S2x2p+O(x3p))nn+S1xp+S2x2p+O(x3p)1-g_n(x) = \frac{(n + S_1 x^p + S_2 x^{2p} + O(x^{3p})) - n}{n + S_1 x^p + S_2 x^{2p} + O(x^{3p})} 1gn(x)=S1xp+S2x2p+O(x3p)n+S1xp+S2x2p+O(x3p)1-g_n(x) = \frac{S_1 x^p + S_2 x^{2p} + O(x^{3p})}{n + S_1 x^p + S_2 x^{2p} + O(x^{3p})}

Finally, we find the limit: limx01gn(x)xp=limx0S1xp+S2x2p+O(x3p)n+S1xp+S2x2p+O(x3p)xp\lim_{x \to 0} \frac{1-g_n(x)}{x^p} = \lim_{x \to 0} \frac{\frac{S_1 x^p + S_2 x^{2p} + O(x^{3p})}{n + S_1 x^p + S_2 x^{2p} + O(x^{3p})}}{x^p} Divide the numerator by xpx^p: limx0S1+S2xp+O(x2p)n+S1xp+S2x2p+O(x3p)\lim_{x \to 0} \frac{S_1 + S_2 x^p + O(x^{2p})}{n + S_1 x^p + S_2 x^{2p} + O(x^{3p})}

As x0x \to 0, all terms containing xx will go to zero. So, the limit simplifies to: S1n=k=1nkpn\frac{S_1}{n} = \frac{\sum_{k=1}^{n} k^p}{n}

Now, we apply the given values n=5n=5 and p=3p=3: The limit value is k=15k35\frac{\sum_{k=1}^{5} k^3}{5}.

Calculate the sum k=15k3\sum_{k=1}^{5} k^3: k=15k3=13+23+33+43+53\sum_{k=1}^{5} k^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 =1+8+27+64+125= 1 + 8 + 27 + 64 + 125 =225= 225

Substitute this sum back into the limit expression: Limit =2255=45= \frac{225}{5} = 45.

The final answer is 45\boxed{45}.

Explanation: The problem involves evaluating a limit of a function gn(x)g_n(x) which is defined in terms of a sum. The key insight is to use the Taylor series expansion for 11y=1+y+y2+...\frac{1}{1-y} = 1+y+y^2+... for small yy. By substituting y=kpxpy=k^p x^p for each term in the sum, we can express the denominator of gn(x)g_n(x) as n+xpk=1nkp+O(x2p)n + x^p \sum_{k=1}^{n} k^p + O(x^{2p}). Then, 1gn(x)1-g_n(x) simplifies to xpk=1nkp+O(x2p)n+O(xp)\frac{x^p \sum_{k=1}^{n} k^p + O(x^{2p})}{n + O(x^p)}. Dividing by xpx^p and taking the limit as x0x \to 0 yields k=1nkpn\frac{\sum_{k=1}^{n} k^p}{n}. Finally, substituting n=5n=5 and p=3p=3, we calculate the sum of the first five cubes and divide by 5, which gives 45.