Solveeit Logo

Question

Question: For one mole of an ideal gas which of the following relation is correct ?...

For one mole of an ideal gas which of the following relation is correct ?

A

(PT)V\left( \frac{\partial\mathbf{P}}{\partial T} \right)_{V}(PV)T\left( \frac{\partial P}{\partial V} \right)_{T}= –1

B

(PT)V\left( \frac{\partial\mathbf{P}}{\partial T} \right)_{V}(VP)T\left( \frac{\partial V}{\partial P} \right)_{T}= 1

C

(PT)V\left( \frac{\partial\mathbf{P}}{\partial T} \right)_{V} (TV)P\left( \frac { \partial \mathrm { T } } { \partial \mathrm { V } } \right) _ { \mathrm { P } } (VP)T\left( \frac{\partial V}{\partial P} \right)_{T} = –1

D

None of these

Answer

(PT)V\left( \frac{\partial\mathbf{P}}{\partial T} \right)_{V} (TV)P\left( \frac { \partial \mathrm { T } } { \partial \mathrm { V } } \right) _ { \mathrm { P } } (VP)T\left( \frac{\partial V}{\partial P} \right)_{T} = –1

Explanation

Solution

For one mole of an ideal gas PV = RT

or PdV + VdP = RdT

Dividing the equation by dT and introducing the condition of constant volume, we get

V (PT)V\left( \frac{\partial\mathbf{P}}{\partial T} \right)_{V} = R

or (PT)V\left( \frac{\partial\mathbf{P}}{\partial T} \right)_{V} = RV\frac{R}{V}

(TV)P\left( \frac{\partial T}{\partial V} \right)_{P} = PR\frac{P}{R} and (VP)T\left( \frac{\partial V}{\partial P} \right)_{T}= –VP\frac{V}{P}

\(PT)V\left( \frac{\partial\mathbf{P}}{\partial T} \right)_{V} (TV)P\left( \frac { \partial \mathrm { T } } { \partial \mathrm { V } } \right) _ { \mathrm { P } } (VP)T\left( \frac{\partial V}{\partial P} \right)_{T} = –RV\frac{R}{V} × PR\frac{P}{R}× VP\frac{V}{P}

= –1