Solveeit Logo

Question

Mathematics Question on permutations and combinations

For nonnegative integers ss and rr,
let(s r)={s!r!(sr)! if rs 0 if r>s\begin{pmatrix}s \\\ r\end{pmatrix}=\begin{cases}\frac{s !}{r !(s-r) !} & \text { if } r \leq s \\\ 0 & \text { if } r>s\end{cases}.
For positive integers mm and nn,
let g(m,n)p=0m+nf(m,n,p)(n+p p)g(m, n)-\displaystyle\sum_{p=0}^{m+n} \frac{f(m, n, p)}{\begin{pmatrix}n+p \\\ p\end{pmatrix}}
where for any nonnegative integer pp,
f(m,n,p)=i=0p(m i)(n+i p)(p+n pi)f(m, n, p)=\displaystyle\sum_{i=0}^{p}\begin{pmatrix}m \\\ i\end{pmatrix}\begin{pmatrix}n+i \\\ p\end{pmatrix}\begin{pmatrix}p+n \\\ p-i\end{pmatrix}.
Then which of the following statements is/are TRUE?

A

g(m,n)=g(n,m)g ( m , n )= g ( n , m ) for all positive integers m,nm , n

B

g(m,n+1)=g(m+1,n)g ( m , n +1)= g ( m +1, n ) for all positive integers m,nm , n

C

g(2m,2n)=2g(m,n)g (2 m , 2 n )=2 g ( m , n ) for all positive integers m,nm , n

D

g(2m,2n)=(g(m,n))2g (2 m , 2 n )=( g ( m , n ))^{2} for all positive integers m,nm , n

Answer

g(m,n)=g(n,m)g ( m , n )= g ( n , m ) for all positive integers m,nm , n

Explanation

Solution

(A) g(m,n)=g(n,m)g ( m , n )= g ( n , m ) for all positive integers m,nm , n
(B) g(m,n+1)=g(m+1,n)g ( m , n +1)= g ( m +1, n ) for all positive integers m,nm , n
(D) g(2m,2n)=(g(m,n))2g (2 m , 2 n )=( g ( m , n ))^{2} for all positive integers m,nm , n