Question
Mathematics Question on permutations and combinations
For nonnegative integers s and r,
let(s r)={r!(s−r)!s! 0 if r≤s if r>s.
For positive integers m and n,
let g(m,n)−p=0∑m+n(n+p p)f(m,n,p)
where for any nonnegative integer p,
f(m,n,p)=i=0∑p(m i)(n+i p)(p+n p−i).
Then which of the following statements is/are TRUE?
A
g(m,n)=g(n,m) for all positive integers m,n
B
g(m,n+1)=g(m+1,n) for all positive integers m,n
C
g(2m,2n)=2g(m,n) for all positive integers m,n
D
g(2m,2n)=(g(m,n))2 for all positive integers m,n
Answer
g(m,n)=g(n,m) for all positive integers m,n
Explanation
Solution
(A) g(m,n)=g(n,m) for all positive integers m,n
(B) g(m,n+1)=g(m+1,n) for all positive integers m,n
(D) g(2m,2n)=(g(m,n))2 for all positive integers m,n