Question
Mathematics Question on Limits
For non-negative integers n, let f(n)=k=1∑nsin2(n+2k+1π)k=1∑nsin(n+2k+1π)sin(n+2k+2π) Assuming cos−1x takes values in [0,π], which of the following options is/are correct?
A
f(4) = 23
B
limn→∞f(n)=21
C
If α=tan(cos−1f(6)), then α2+2α−1=0
D
sin(7cos−1f(5))=0
Answer
sin(7cos−1f(5))=0
Explanation
Solution
f(n)=k=1∑n(1−cos(n+22k+2)π)k=1∑n(cos(n+2π)−cos(n+22k+3)π)
f(n)=(n+1)−(k=1∑ncos(n+22k+2)π)(n+1)cos(n+2π)−(k=1∑ncos(n+22k+3)π)
f(n)=(n+1)−(sin(n+2π)sin(n+2(n+1)ππ).cos(2(n+2)2(n+2)π))(n+1)cosn+2π−(sin(n+2π)sin(n+2(n+1)π).cos(n+2n+3)π)
f(n)=(n+1)+1(n+1)cos(n+2π)+cos(n+2π)⇒g(x)=cos(n+2π)
(A)sin(7cos−17π)=sinπ=0
(B)f(4)=cos6π=23
(C) n→∞lim cos(n+2π)=1
(D)α=tan(cos−1cos8π)=2−1⇒α+12
α2+2α−1=0