Solveeit Logo

Question

Mathematics Question on sets

For n ∈ N let SnS_n={z∈C:|z−3+2i|=n4\frac{n}{4}} and TnT_n={z ∈ C:|z−2+3i|=1n\frac{1}{n}}.Then the number of elements in the set

A

0

B

2

C

Infinite

D

4

Answer

Infinite

Explanation

Solution

SnS_n={z∈C:|z−3+2i|=n4\frac{n}{4}}
represents a circle with centre C 1(3, –2) and radius
r1=n4\frac{n}{4}
Similarly,
T n represents circle with centre C 2(2, –3) and radius
r2=1n\frac{1}{n}
As _S n _∩ T n = φ
C 1 C 2>r 1 + r 2 OR C 1 C 2< |r 1 – r 2|
2\sqrt2>n4+1n\frac{n}{4}+\frac{1}{n}
OR
2\sqrt2<|n41n\frac{n}{4}-\frac{1}{n}|
n = 1, 2, 3, 4 _n _may take infinite values.

The Correct Option is (C): Infinite