Solveeit Logo

Question

Real Analysis Question on Sequences and Series

For n ∈ N\N, let
an=1nn1k=0nn!k!(nk)!nkk+1a_n=\frac{1}{n^{n-1}}\sum\limits_{k=0}^n\frac{n!}{k!(n-k)!}\frac{n^k}{k+1}
and β=limnan\beta=\lim\limits_{n\rightarrow \infin}a_n. Then, the value of log 𝛽 equals ___________ (rounded off to two decimal places).

Answer

The correct answer is 0.98 to 1.02. (approx)