Solveeit Logo

Question

Real Analysis Question on Sequences and Series

For n Nn\ \in \N, let
an=1(3n+2)(3n+4)a_n=\frac{1}{(3n+2)(3n+4)} and bn=n3+cos(3n)3n+n3b_n=\frac{n^3+\cos(3^n)}{3n+n^3}.
Then, which one of the following is TRUE ?

A

n=1an\sum\limits_{n=1}^{\infin}a_n is convergent but n=1bn\sum\limits_{n=1}^{\infin}b_n is divergent

B

n=1an\sum\limits_{n=1}^{\infin}a_n is divergent but n=1bn\sum\limits_{n=1}^{\infin}b_n is convergent

C

Both n=1an\sum\limits_{n=1}^{\infin}a_n and n=1bn\sum\limits_{n=1}^{\infin}b_n are divergent

D

Both n=1an\sum\limits_{n=1}^{\infin}a_n and n=1bn\sum\limits_{n=1}^{\infin}b_n are convergent

Answer

Both n=1an\sum\limits_{n=1}^{\infin}a_n and n=1bn\sum\limits_{n=1}^{\infin}b_n are convergent

Explanation

Solution

The correct option is (D) : Both n=1an\sum\limits_{n=1}^{\infin}a_n and n=1bn\sum\limits_{n=1}^{\infin}b_n are convergent.