Solveeit Logo

Question

Statistics Question on Univariate Distributions

For nNn \in \mathbb{N}, let X1,X2,,XnX_1, X_2, \ldots, X_n be a random sample from the Cauchy distribution having probability density function
f(x)=1π(1+x2),<x<.f(x) = \frac{1}{\pi(1 + x^2)}, \quad -\infty < x < \infty.
Let g:RRg: \mathbb{R} \to \mathbb{R} be defined by
g(x)={x,if 1000x1000\0,otherwise.g(x) = \begin{cases} x, & \text{if } -1000 \leq x \leq 1000 \\\0, & \text{otherwise}\end{cases}.
Let
α=limnP(1n3/4i=1ng(Xi)>12).\alpha = \lim_{n \to \infty} P\left( \frac{1}{n^{3/4}} \sum_{i=1}^n g(X_i) > \frac{1}{2} \right).
Then 100α100\alpha is equal to __________ (answer in integer).

Answer

The correct Answer is : 0 -0(Approx.)